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Abstract— We study a two-player Stackelberg game in which
the follower’s strategy depends on a parameter vector that is
unknown to the leader. An adaptive learning algorithm is de-
signed to simultaneously estimate the unknown parameter and
minimize the leader’s cost, based on adaptive control techniques
and hysteresis switching. The algorithm guarantees that the
leader’s cost predicted using the parameter estimate becomes
indistinguishable from its actual cost in finite time, up to a
preselected, arbitrarily small error threshold, and that the first-
order necessary condition for optimality holds asymptotically
for the predicted cost. If an additional persistent excitation
condition holds, then the parameter estimation error can also
be bounded by a preselected, arbitrarily small threshold in finite
time. The algorithm and convergence results are illustrated via
a simple simulation example in the domain of network security.

I. INTRODUCTION

A modern engineering system often involves multiple self-
interested decision makers whose actions have mutual conse-
quences. Examples include communication devices sharing
a network with limited capacity, and computer programs
sharing a limited computational resource. Game theory pro-
vides a systematic framework for modeling cooperation and
conflict between these so-called strategic players, and has
been widely used in areas such as robust design, resource
allocation, and network security [1]–[3].

A fundamental question in game theory is whether the
players can converge to a Nash equilibrium—a tuple of
strategies for which no one has a unilateral incentive to
change—if they play the game repeatedly and adjust their
strategies based on historical outcomes. A primary example
of such a learning process is fictitious play [4], in which
each player believes that its opponents are playing constant
mixed strategies in agreement with the empirical distribu-
tions of their past actions, and plays the corresponding
best response. Another well-known example is the gradient
response method [5], in which each player adjusts its strategy
using the gradient of its cost function. These learning pro-
cesses have attracted significant research interests [6], [7].

In this paper, we propose an adaptive learning approach
for a hierarchical game model proposed by Stackelberg [8],
in which one player (called the leader) selects its action
first, and then the other player (called the follower), informed
of the leader’s choice, selects its own action. Therefore, a
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follower’s strategy in a Stackelberg game is a function that
specifies a response to each leader’s possible action.

Stackelberg games provide a natural framework for under-
standing systems with asymmetrical information, a common
feature of many network problems [9], [10]. They are es-
pecially useful for modeling security problems, where the
defender (leader) is usually unaware of the attack objective
ahead of time, whereas the attacker (follower) is able to
observe the defense strategy and attack after careful planning.
Stackelberg Security Games have been applied to various
real-world security domains, and have lead to practical
implementations such as the ARMOR program at the Los
Angeles International Airport [11].

Asymmetrical information often leads to scenarios with no
Nash equilibrium but with a Stackelberg equilibrium, as the
conditions for existence of the former is much stronger than
those of the latter [1, p. 181]. For these scenarios, learning
options like fictitious play and gradient response cannot
be applied, and novel approaches are needed to achieve
convergence to a Stackelberg equilibrium. Existing results
on learning in Stackelberg games are limited to linear and
quadratic costs and finite action sets [12]–[14], which are too
restrictive for many applications including network security.

This paper studies two-player Stackelberg games with
continuous action sets. We consider the scenario where the
leader only has partial knowledge of the follower’s action
set and cost function. As a result, the follower’s strategy
belongs to a known family of functions parameterized by
an unknown parameter vector. Our main contribution is an
adaptive learning algorithm that simultaneously estimates
the unknown parameter based on the follower’s past actions
and minimizes the leader’s cost, designed based on adaptive
control techniques and hysteresis switching. It guarantees
that the leader’s cost predicted using the parameter estimate
becomes indistinguishable from its actual cost in finite time,
up to a preselected, arbitrarily small error threshold, and
that the first-order necessary condition for optimality holds
asymptotically for the predicted cost. If an additional persis-
tent excitation condition holds, then the parameter estimation
error can also be bounded by a preselected, arbitrarily small
threshold in finite time. Furthermore, we consider the case
where the parameterized function that is known to the leader
does not perfectly match the follower’s actual strategy, and
prove that our adaptive learning algorithm can be adjusted
to guarantee the same convergence results for preselected
error thresholds larger than the size of the mismatch. The
algorithm and convergence results are illustrated via a simple
simulation example motivated by link-flooding denial-of-
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service (DoS) attacks such as the Crossfire attack [15].
Notations: Let R+ := [0,∞) and N := {0, 1, . . .}. Let In

be the identity matrix in Rn×n; the subscript is omitted when
the dimension is implicit. Denote by ‖·‖ the Euclidean norm
for vectors and the (induced) Euclidean norm for matrices.
For a set S ⊂ Rn, denote by ∂S, S, and convS its boundary,
closure, and closed convex hull, respectively. A signal u :
[t0,∞) → Rn is of class L∞ if supt≥t0 ‖u(t)‖ is finite. A
function is of class C1 if it is continuously differentiable.

II. PROBLEM FORMULATION

Consider a two-player game where U ⊂ Rnu and A ⊂
Rna are the action sets of the first and the second players,
respectively, and J : U × A → R and H : A × U → R
are the corresponding cost functions. We are interested in
a hierarchical game model proposed by Stackelberg [8],
where the first player (called the leader) selects its action
u ∈ U first, and then the second player (called the follower),
informed of the leader’s choice, selects its action a ∈ A. The
corresponding notion of equilibrium is defined as follows.

Definition 1 ([1, Def. 4.6]). An action u∗ ∈ U is a
Stackelberg equilibrium action for the leader if

sup
a∈βa(u∗)

J(u∗, a) = inf
u∈U

sup
a∈βa(u)

J(u, a),

where βa(u) ⊂ A denotes the set of best responses against
u, that is, βa(u) := {a ∈ A : H(a, u) = infa′∈AH(a′, u)},
and supa∈βa(u) J(u, a) =∞ if βa(u) = ∅.

We consider games with perfect but incomplete informa-
tion, where the leader only has partial knowledge of the fol-
lower’s action set and cost function, and thus the follower’s
actual strategy is an unknown function f∗ : U → A such
that f∗(u) ∈ βa(u) for all u ∈ U . However, f∗ belongs to
a parameterized family of functions {u 7→ f(θ, u) : θ ∈ Θ},
that is, there is a constant θ∗ ∈ Θ such that

f∗(u) = f(θ∗, u) ∀u ∈ U . (1)

The parameterized function f : Θ × U → Rna and the
parameter set Θ ⊂ Rnθ are known to the leader, but the
actual value of θ∗ is unknown.

In practice, assuming that the follower’s actual strategy
belongs to a known parameterized family of functions intro-
duces little loss of generality, as it can always be approx-
imated on a compact set up to an arbitrary precision as a
finite weighted sum of a preselected class of basis functions.
An example of such an approximation is the radial basis
function (RBF) model [16], in which the leader assumes

f(θ∗, u) =

nθ∑
j=1

θ∗jFj(u) =

nθ∑
j=1

θ∗jφ(‖u− ucj‖), (2)

where θ∗ = (θ∗1 , . . . , θ
∗
nθ

) is the unknown parameter vector,
and each Fj : U → Rna is an RBF centered at ucj . In
the RBF model, the approximation is affine with respect
to the unknown parameter, which is also common in many
other widely-used approximation models such as orthogonal
polynomials and multivariate splines [16]. This motivates

restricting our attention to affine maps θ 7→ f(θ, u). The
following assumption captures this and additional regularity
conditions that we use to guarantee existence of a Stackel-
berg equilibrium.

Assumption 1 (Regularity). The leader’s action set U and
the parameter set Θ are convex and compact, the leader’s cost
function J is C1 with locally Lipschitz Jacobian, the param-
eterized function f is C1 with locally Lipschitz gradient, and
the map θ 7→ f(θ, u) is affine for each fixed u ∈ U .

Under Assumption 1, existence of a Stackelberg equi-
librium follows from standard results, e.g., [1, Th. 4.8].
In particular, these conditions are much weaker than the
sufficient conditions for existence of a Nash equilibrium [1,
p. 181], which is consistent with our interest in games games
with no Nash equilibrium but with a Stackelberg equilibrium.

We denote by ∇uJ(u, a) and ∇aJ(u, a) the gradients of
the maps u 7→ J(u, a) and a 7→ J(u, a), respectively, and
by ∇θf(u) and ∇uf(θ, u) the Jacobian matrices of the maps
θ 7→ f(θ, u) and u 7→ f(θ, u), respectively. (To be consistent
with the definition of Jacobian matrix, we take gradients as
row vectors.) In particular, the Jacobian matrix ∇θf(u) is
independent of θ due to the affine condition in Assumption 1.

Our goal is to adjust the leader’s action u to minimize its
cost J(u, a), that is, to solve the optimization problem

min
u∈U

J(u, f(θ∗, u)),

based on past observations of the follower’s action a =
f(θ∗, u) and the leader’s cost J(u, a), but without knowing
the actual parameter θ∗. Our approach to solve this problem
consists of two components:
1) Construct a parameter estimate θ that approaches the

actual parameter θ∗.
2) Adjust the leader’s action u based on a gradient de-

scent method to minimize its predicted cost Ĵ(u, θ) :=
J(u, f(θ, u)), that is, to solve the optimization problem

min
u∈U

Ĵ(u, θ). (3)

In this paper, our analysis and design are formulated using
continuous-time dynamics, which is common in the literature
of learning in game theory [6].

III. ESTIMATION AND MINIMIZATION

To specify the adaptive algorithm for estimating the un-
known parameter θ∗ ∈ Θ and optimizing the leader’s action
u ∈ U , we recall the following notions and basic properties
from convex analysis; for more details, see, e.g., [17, Sec. 6].

For a closed convex set C ⊂ Rn and a point v ∈ Rn, we
denote by [v]C the projection of v onto C, that is, [v]C :=
arg minw∈C ‖w − v‖. Then [v]C is unique as the set C is
closed and convex, and [v]S = v if v ∈ S.

For a convex set S ⊂ Rn and a point x ∈ S, we denote
by TS(x) the tangent cone to S at x, that is,

TS(x) := {h(z − x) : z ∈ S, h > 0}, (4)
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and by NS(x) the normal cone to S at x, that is,

NS(x) := {v ∈ Rn : ∀w ∈ TS(x), v>w ≤ 0}. (5)

Then TS(x) and NS(x) are closed and convex, and TS(x) =
Rn and NS(x) = {0} if x ∈ S\∂S. For all v ∈ Rn, we have

[v]TS(x) ∈ TS(x), v − [v]TS(x) ∈ NS(x) (6)

and (
v − [v]TS(x)

)>
[v]TS(x) = 0. (7)

A. Parameter estimation

We construct the parameter estimate θ by comparing past
observations of the follower’s action a = f(θ∗, u) and
the leader’s cost J(u, a) with the corresponding predicted
values f(θ, u) and Ĵ(u, θ) = J(u, f(θ, u)). Our goal is to
ensure that the norm of the estimation error ‖θ − θ∗‖ is
monotonically nonincreasing, regardless of how the leader’s
action u is adjusted. First, we establish a relation between
the observation error

eobs :=

[
f(θ, u)− a

Ĵ(u, θ)− J(u, a)

]
and the estimation error θ − θ∗.

Lemma 1. The observation error eobs satisfies

eobs = K(u, a, θ)(θ − θ∗) (8)

with the gain matrix

K(u, a, θ) :=

[
I∫ 1

0
∇aJ(u, ρf(θ, u) + (1− ρ)a) dρ

]
∇θf(u).

(9)

Following Lemma 1, the observation error eobs would be
zero if the current estimate θ of the unknown parameter
θ∗ was correct. However, in most interesting scenarios, the
dimension nθ of θ∗ is much larger than the dimension na+1
of eobs; thus the gain matrix K(u, a, θ) cannot be invertible,
and eobs = 0 does not imply θ = θ∗.

We propose the following estimation law to drive the
parameter estimate θ towards the actual parameter θ∗:

θ̇ = [−λeK(u, a, θ)>eobs]TΘ(θ) (10)

with the gain matrix K(u, a, θ) defined by (9) and the
switching signal λe : R+ → {0, λ1} defined by

λe(t) :=


λ1 if ‖eobs(t)‖ ≥ εobs;

lim
s↗t

λe(s) if ‖eobs(t)‖ ∈ (εobs/2, εobs);

0 if ‖eobs(t)‖ ≤ εobs/2

(11)

and λe(0) := λ1 if ‖eobs(0)‖ ∈ (εobs/2, εobs), where
εobs, λ1 > 0 are preselected constants. Several comments are
in order: First, the gain matrix K(u, a, θ) does not depend
on the actual parameter θ∗, so (10) can be implemented
without knowing θ∗. Second, the projection [·]TΘ(θ) onto the
tangent cone TΘ(θ) is used to ensure that θ remains inside
the compact convex set Θ. Finally, the right-continuous,
piecewise constant switching signal λe is designed so that

the adaption is on when ‖eobs‖ ≥ εobs and off when
‖eobs‖ ≤ εobs/2, with a hysteresis switching rule that avoids
chattering. The key feature of (10) is that the estimation error
θ − θ∗ satisfies
d‖θ − θ∗‖2

dt
= 2(θ − θ∗)>[−λeK(u, a, θ)>eobs]TΘ(θ)

≤ 2(θ − θ∗)>
(
−λeK(u, a, θ)>eobs

)
= −2λe‖eobs‖2,

where the inequality follows from (4)–(6). Hence the esti-
mation law (10) with the switching signal (11) guarantees

d‖θ − θ∗‖2

dt
≤ −2λe‖eobs‖2 ≤ 0, (12)

which implies that ‖θ− θ∗‖ is monotonically nonincreasing
and will not stop approaching zero unless ‖eobs‖ < εobs. In
the convergence results in Section IV, we will show that the
adaption of the parameter estimate θ stops in finite time, and
the observation error eobs satisfies ‖eobs‖ < εobs afterward.

B. Cost minimization
Several options are available to adjust the leader’s action

u, but in this paper our analysis will focus on a gradient
descent method, which is fairly robust for a wide range of
problems. Our ultimate goal is to minimize the leader’s cost
J(u, a) = J(u, f(θ∗, u)). However, computing the gradient
descent direction of the actual cost requires knowledge of
the actual parameter θ∗. Therefore, we minimize instead the
leader’s estimated cost Ĵ(u, θ), which only depends on the
parameter estimate θ. This change in objective is justified by
the fact that ‖Ĵ(u, θ)−J(u, a)‖ ≤ ‖eobs‖ < εobs holds after
finite time, which will be established in Section IV.

The time derivative of the estimated cost Ĵ(u, θ) is
˙̂
J(u, θ) = ∇uĴ(u, θ) u̇+∇θĴ(u, θ) θ̇, (13)

where ∇θĴ(u, θ) = ∇aJ(u, f(θ, u))∇θf(u) and ∇uĴ(u, θ)
= ∇uJ(u, f(θ, u))+∇aJ(u, f(θ, u))∇uf(θ, u) are the gradi-
ents of the maps u 7→ Ĵ(u, θ) and θ 7→ Ĵ(u, θ), respectively
(note that ∇uJ(u, f(θ, u)) denotes the gradient of the map
u 7→ J(u, â) at â = f(θ, u) here). As we will establish that
the adaption of θ stops in finite time, we neglect the second
term in (13) and focus exclusively in adjusting u along the
gradient descent direction of u 7→ Ĵ(u, θ). This motivates
the following minimization law to adjust the leader’s action:

u̇ =
[
−λ2∇uĴ(u, θ)>

]
TU (u)

, (14)

where λ2 > 0 is a preselected constant. The projection
[·]TU (u) onto the tangent cone TU (u) is used to ensure that u
remains inside the compact convex set U . Then (7) implies

˙̂
J(u, θ) = ∇uĴ(u, θ)

[
−λ2∇uĴ(u, θ)>

]
TU (u)

+∇θĴ(u, θ) θ̇

= −
∥∥[−λ2∇uĴ(u, θ)>

]
TU (u)

∥∥2
/λ2 +∇θĴ(u, θ) θ̇

= −‖u̇‖2/λ2 +∇θĴ(u, θ) θ̇.

Hence the minimization law (14) ensures that if θ̇ = 0 then
˙̂
J(u, θ) ≤ −‖u̇‖2/λ2 ≤ 0. In the convergence results in Sec-
tion IV, we will show that the leader’s action u approaches
the set of points for which the first-order necessary condition
for optimality holds for the optimization problem (3).
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IV. CONVERGENCE ANALYSIS

We now state the main result of this paper:

Theorem 1. Suppose that Assumption 1 holds. Given any
threshold εobs > 0 in (11), the estimation and minimization
algorithm (10) and (14) with the switching signal (11)
guarantees the following properties:
1) There exists a time T ≥ 0 such that

‖eobs(t)‖ < εobs, θ(t) = θ(T ) ∀ t ≥ T. (15)

2) The first-order necessary condition for optimality holds
asymptotically for the optimization problem (3), that is,

lim
t→∞

[
−∇uĴ(u(t), θ(T ))>

]
TU (u(t))

= 0. (16)

Essentially, item 1) guarantees that the parameter estimate
θ converges in finite time to a point which is indistinguish-
able from the actual parameter θ∗ based on observations
of the follower’s action a = f(θ∗, u) and the leader’s cost
J(u, a), up to an error no larger than the threshold εobs. For
item 2), the necessity of (16) for optimality is justified by the
following result, which is a consequence of [17, Th. 6.12].

Lemma 2. If û∗ is locally optimal for the optimization prob-
lem (3) with some fixed θ, then

[
−∇uĴ(û∗, θ)>

]
TU (û∗)

= 0.

Proof of Theorem 1. As the right hand-sides of (10) and
(14) are potentially discontinuous due to the projections and
switching, the proof of Theorem 1 uses results from differ-
ential inclusions theory; see the Appendix for the necessary
preliminaries.

First, we establish existence, boundedness, and uniqueness
of solutions for the system defined by (10) and (14).

Lemma 3. For each (θ0, u0) ∈ Θ × U , there is a unique
Carathéodory solution to the system defined by (10) and (14)
on R+ with (θ(0), u(0)) = (θ0, u0), that is, there are unique
absolutely continuous functions θ : R+ → Rnθ and u :
R+ → Rnu such that (10) and (14) hold almost everywhere
on R+ with (θ(0), u(0)) = (θ0, u0). Moreover, (θ(t), u(t)) ∈
Θ× U for all t ≥ 0, and θ, θ̇, u, u̇, eobs, ėobs ∈ L∞.

Lemma 3 is established by modeling the system defined
by (10) and (14) using the project dynamical system (26)
in the Appendix with the state x := (θ, u) and the set S :=
Θ×U , and then combining the results on hysteresis switching
from [18] with the results on existence, boundedness, and
uniqueness of solutions for (26) from Lemma 4.

Second, we establish item 1) of Theorem 1 via arguments
along the lines of the proof of Barbalat’s lemma [19,
Lemma 3.2.6]. We cannot use Barbalat’s lemma directly
since the switching signal λe in (10) is not continuous
but only piecewise continuous. Following (12), we see
that ‖θ − θ∗‖2 is monotonically nonincreasing. Therefore
limt→∞ ‖θ(t)− θ∗‖2, and thus

lim
t→∞

∫ t

0

λe(s)‖eobs(s)‖2 ds, (17)

exists and is finite. On the other hand, (10) and (11) imply
that (15) holds if there exists a time T ≥ 0 such that

λe(t) = 0 ∀ t ≥ T. (18)

Assume (18) does not hold for any T ≥ 0. Then (11) implies
that there exists an unbounded increasing sequence (tk)k∈N
with t0 > 0 such that λe(tk) = λ1 and ‖eobs(tk)‖ > εobs/2
for all k ∈ N. Now we show that there exists an unbounded
sequence (sk)k∈N with sk ∈ [tk − δ, tk] such that

‖eobs(t)‖ > εobs/2, λe(t) = λ1 (19)

for all k ∈ N and t ∈ [sk, sk + δ) with the constant δ :=
min{t0, εobs/(2 sups≥0 ‖ėobs(s)‖)} > 0. Indeed, for each
k ∈ N, consider the following two possibilities:
1) If ‖eobs(t)‖ < εobs for all t ∈ [tk − δ, tk], then (11) and

λe(tk) = λ1 imply that (19) holds with sk = tk − δ.
2) Otherwise, there exists an sk ∈ [tk − δ, tk] such that
‖eobs(sk)‖ = εobs, and (19) follows from the definition
of δ and (11).

Following (19), we see that∫ sk+δ

sk

λe(s)‖eobs(s)‖2 ds ≥ λ1ε
2
obsδ

4
> 0

for the unbounded sequence (sk)k∈N, which contradicts the
property that (17) exists and is finite. Therefore, there exists
a time T ≥ 0 such that (18), and thus (15), holds.

Finally, we establish item 2) of Theorem 1 using the invari-
ance principle for projected gradient descent Proposition 5
in the Appendix. After time T , the system (14) becomes

u̇ =
[
−λ2∇uĴ(u, θ(T ))>

]
TU (u)

,

which can be modeled using the projected dynamical system
(26) in the Appendix with the state x := u and the set
S := U . The corresponding function g in (26) is given
by g(x) := −λ2∇uĴ(x, θ(T ))>which satisfies (30) with
V (x) := λ2Ĵ(x, θ(T )). Then (16) follows from (31) in
Proposition 5.

In Theorem 1, there is no claim that the parameter estimate
θ necessarily converges to the actual parameter θ∗. However,
this can be guaranteed if we assume that the following
persistent excitation (PE) condition holds.

Assumption 2 (PE). There exist constants τ0, α0 > 0 such
that the gain matrix K(u, a, θ) defined by (9) satisfies∫ t+τ0

t

K(s)>K(s) ds ≥ α0I ∀ t ≥ 0, (20)

where we let K(t) := K(u(t), a(t), θ(t)) for brevity.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Then
by setting the threshold

εobs := εθ
√
α0/τ0 (21)

in (11) for any given constant εθ > 0, the estimation and
minimization algorithm (10) and (14) with the switching
signal (11) guarantees the following properties:
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1) There exists a time T ≥ 0 such that (15) holds, and

‖θ(T )− θ∗‖ < εθ. (22)

2) The first-order necessary condition for optimality holds
asymptotically for (3), that is, (16) holds.

Proof. As (15) and (16) are established in Theorems 1,
it remains to prove (22). To this effect, we note that the
inequality in (15) implies∫ T+τ0

T

‖eobs(s)‖2 ds < ε2
obsτ0 = α0ε

2
θ,

where the equality follows from (21). On the other hand, (8)
and the equality in (15) imply∫ T+τ0

T

‖eobs(s)‖2 ds =

∫ T+τ0

T

‖K(s)(θ(T )− θ∗)‖2 ds

≥ α0‖θ(T )− θ∗‖2,

where the inequality follows from the PE condition (20).
Combining the inequalities above yields (22).

Remark 1. In view of (9), a sufficient condition for (20) is∫ t+τ0

t

∇θf(u(s))>∇θf(u(s)) ds ≥ α0I ∀ t ≥ 0. (23)

The PE condition (23) is more restrictive than (20), but has
the advantage that it can be checked without knowing the
estimate θ. Moreover, from the proof of Theorem 2, we
see that (22) only requires (20) or (23) to hold at t = T .
Consequently, in practice it suffices to enforce (20) or (23)
when λe in (11) has been set to zero.

V. MODEL MISMATCH

Up till now we assumed that there was some unknown
parameter θ∗ from the known parameter set Θ such that
(1) holds for the follower’s actual strategy f∗ and the
parameterized function f that is known to the leader. In this
section, we consider the case where such perfect matching
may not exist, and study the effect of a bounded mismatch
between f∗ and f .

Assumption 3 (Mismatch). The follower’s actual strategy
f∗ is locally Lipschitz, and there is an unknown parameter
θ∗ ∈ Θ such that

max
u∈U
‖f(θ∗, u)− f∗(u)‖ ≤ εf/κ

with

κ := max
θ∈Θ, u∈U

∥∥∥∥[ I∫ 1

0
∇aJ(u, ρf(θ, u) + (1− ρ)f∗(u)) dρ

]∥∥∥∥
for some known constant εf > 0.

Similar arguments to those in the proof of Lemma 1 show
that the observation error eobs now satisfies

eobs = K(u, a, θ)(θ − θ∗) + ef (24)

with the gain matrix K(u, a, θ) defined by (9) and the
mismatch error

ef :=

[
I∫ 1

0
∇aJ(u, ρf(θ, u) + (1− ρ) a) dρ

]
(f(θ∗, u)− a).

Then Assumption 3 implies ‖ef (t)‖ ≤ εf for all t ≥ 0. The
effect of the mismatch error ef in (24) can be mitigated by
keeping the same estimation law (10) while adjusting the
definition of the switching signal λe by

λe(t) :=


λ1 if ‖eobs(t)‖ ≥ εobs;

lim
s↗t

λe(s) if ‖eobs(t)‖ ∈ ((εobs + εf )/2, εobs);

0 if ‖eobs(t)‖ ≤ (εobs + εf )/2
(25)

and λe(0) = λ1 if ‖eobs(0)‖ ∈ ((εobs + εf )/2, εobs), where
εobs > εf and λ1 > 0 are preselected constants.

The following two results extend Theorems 1 and 2 to the
current case without perfect matching between the follower’s
actual strategy f∗ and some map u 7→ f(θ∗, u).

Theorem 3. Suppose that Assumptions 1 and 3 hold. Given
any threshold εobs > εf in (25), the estimation and mini-
mization algorithm (10) and (14) with the switching signal
(25) guarantees the following properties:
1) There exists a time T ≥ 0 such that (15) holds.
2) The first-order necessary condition for optimality holds

asymptotically for (3), that is, (16) holds.

Theorem 4. Suppose that Assumptions 1–3 hold. Then by
setting the threshold εobs :=

√
α0ε2

θ/(2τ0)− ε2
f in (25) for

any given constant εθ > 2εf
√
τ0/α0, the estimation and

minimization algorithm (10) and (14) with the switching
signal (25) guarantees the following properties:
1) There exists a time T ≥ 0 such that (15) and (22) hold.
2) The first-order necessary condition for optimality holds

asymptotically for (3), that is, (16) holds.

VI. SIMULATION EXAMPLE

We illustrate the estimation and minimization algorithm
via a simple example motivated by link-flooding denial-of-
service (DoS) attacks such as the Crossfire attack [15].

Fig. 1. A simple network with one source S, one destination D, and two
links l1 and l2.

Consider the communication network in Fig. 1, and sup-
pose there is a router (leader) that distributes 1 unit of
legitimate traffic between the two links l1 and l2, and an
attacker (follower) that disrupts communication by injecting
1 unit of malicious traffic on the two links. Denote by u, a ∈
[0, 1] the amounts of legitimate and malicious traffic on the
link l1, respectively. Then the total traffic on the links l1 and
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l2 are given by f1 = u+ a and f2 = 2−u− a, respectively.
We assume that a communication delay is incurred on each
link, which is a quadratic function of the corresponding total
traffic, that is, p1(f1) := f2

1 and p2(f2) := f2
2 , and that

the router aims to minimize the average delay for legitimate
traffic, which corresponds to the cost function defined by
J(u, a) := up1(f1)+(1−u)p2(f2) = 5u2 +6ua+a2−8u−
4a+ 4, whereas the attacker aims to disrupt communication
by maximizing the average delay for legitimate traffic, which
corresponds to the cost function H(a, u) := −J(u, a).

Standard convex analysis shows that the attacker’s best
response against u is given by

βa(u) :=

{
0 u ≤ 1/2;

1 u > 1/2,

and the router’s best response against a is given by

βu(a) := (4− 3a)/5.

Then it is straightforward to see that a Nash equilibrium does
not exist for this game, but there is a Stackelberg equilibrium
action u∗ = 1/2 for the router.

If the router knew that the attacker’s cost function was
indeed H , it could select the Stackelberg equilibrium action
u∗ = 1/2. However, we consider a scenario where it does not
and, instead, will use the approach proposed in this paper to
construct its optimal action. To this effect, the router assumes
that the attacker’s strategy satisfies the RBF model (2) with
nθ = 4, the parameter set Θ := [0, 1]4, and the RBF defined
by Fj(u) := 1(−1/8,1/8](‖u−(2j−1)/8‖) for j = 1, . . . , 4.1

For the specific cost function H , the attacker’s actual strategy
is given by f(θ∗, u) with θ∗ = (0, 0, 1, 1).

In the simulations shown in Fig. 2 and 3, the constants are
set to εobs = 10−3, λ1 = 1, and λ2 = 10−2, and the initial
values of the parameter estimate θ and the router’s action
u are randomly generated. For the case without enforcing
PE in Fig. 2, in the first 104 units of time, the router’s
action u converges to the optimum u∗ = 1/2, despite that
the parameter estimate θ does not converge to the actual
parameter θ∗. In Fig. 3, we enforce PE by adding some
random noise to u for a short interval when the observation
error ‖eobs‖ < εobs. In this case, in the first 104 units of time,
the router’s action u converges to the optimum u∗ = 1/2, and
the parameter estimate θ converges to the actual parameter
θ∗. In both cases, we also simulate the scenario where
after 104 units of time, the attacker starts focusing more
on disrupting the link l1 (by using H(a, u) := −5up1(f1)−
(1−u)p2(f2) as the new cost function), so that the new value
of the unknown parameter is θ∗ = (0, 1, 1, 1), and the new
router’s Stackelberg equilibrium action is u∗ = 1/4. The
corresponding simulation results show that our estimation
and minimization algorithm is able to identify this switch

1The function f used here actually violates the regularity conditions in
Assumption 1 as it is discontinuous in u. The continuity requirement of f
in Assumption 1 is only needed so that the gradient descent is well-defined
and does not lead to chattering. In simulation, these issues are handled by
using generalized subgradients at discontinuities [17] and setting u̇ = 0
when the right-hand side of (14) becomes small.

0 0.5 1 1.5 2
0

0.5

1

(a) Parameter estimate
0 0.5 1 1.5 2

-2

0

2

(b) Observation error

0 0.5 1 1.5 2
0

0.5

1

(c) Router’s action
0 0.5 1 1.5 2

0

2

4

(d) Router’s cost and estimate

Fig. 2. Simulation w/o PE (horizontal axis: ×104 units of time). In the first
104 units of time, the router’s action u converges to the optimum u∗ = 1/2;
in the second 104 units of time, the attacker’s cost function changes, and the
router’s action u converges to the new optimum u∗ = 1/4; the parameter
estimate θ does not converge to the actual parameter θ∗ in either case.
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Fig. 3. Simulation w/ PE (horizontal axis: ×104 units of time). In the first
104 units of time, the router’s action u converges to the optimum u∗ = 1/2;
in the second 104 units of time, the attacker’s cost function changes, and the
router’s action u converges to the new optimum u∗ = 1/4; the parameter
estimate θ converges to the actual parameter θ∗ in both cases.

in the attack, as the router’s action converges to the new
optimum u∗ = 1/4 in both Fig. 2 and 3, and the parameter
estimate θ converges to the new parameter θ∗ in Fig. 3.

VII. FUTURE RESEARCH TOPICS

A feature of our learning law (10) is that the norm of the
estimation error ‖θ − θ∗‖ is monotonically nonincreasing,
and the observation error eobs is bounded in norm by the
preselected, arbitrarily small threshold εobs in finite time,
regardless how the leader’s action is adjusted. A future
research direction is to integrate our learning law with more
efficient optimization methods for minimizing the leader’s
cost. Other future research topics include to relax the affine
condition in Assumption 1, and to extend the current results
to Stackelberg games on distributed networks.
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APPENDIX
PROJECTED DYNAMICAL SYSTEMS

Let S ⊂ Rn be a compact convex set, and g : S →
Rn a locally Lipschitz function. In this section, we prove
existence, boundedness, and uniqueness of solutions for the
projected dynamical system

ẋ = [g(x)]TS(x). (26)

The difficulty in analyzing (26) lies in that fact that its right-
hand side is only defined in the domain S and is potentially
discontinuous due to the projection [·]TS(x). Therefore, we
extend (26) to the differential inclusion

ẋ ∈ G(x) (27)

with the set-valued function G : Rn ⇒ Rn defined by

G(x) :=
⋂
ε>0

conv{[g([y]S)]TS([y]S) : ‖y − x‖ ≤ ε},

which is upper semicontinuous on Rn, and satisfies that G(x)
is convex and compact for each x ∈ Rn.

Lemma 4. For each x0 ∈ S, there is a unique Carathéodory
solution to (27) on R+ with x(0) = x0, that is, there exists
a unique absolutely continuous function x : R+ → Rn with
x(0) = x0 such that (27) holds almost everywhere on R+.
Moreover, x(t) ∈ S for all t ≥ 0, and x is also a unique
Carathéodory solution to (26) on R+ with x(0) = x0.

The proof of Lemma 4 uses the following properties of the
functions g and G. As the set S is compact and the function
g is locally Lipschitz, there is a constant γ ≥ 0 such that

‖g(x)− g(y)‖ ≤ γ‖x− y‖ ∀x, y ∈ S. (28)

Then (5) and (6) imply that the set-valued function G satisfies
the one-sided Lipschitz condition

(v − w)>(x− y) ≤ γ‖x− y‖2 (29)

for all x, y ∈ S, v ∈ G(x) and w ∈ G(y).

Proof of Lemma 4. Consider an arbitrary T > 0. The Lip-
schitz condition (28), together with the triangle inequality,
implies that ‖g(x)‖ ≤ α(1 + ‖x‖) for all x ∈ S with the
constant α := maxy∈S{‖g(y)‖ + γ‖y‖, γ}. Then similar
arguments to those in [20] imply existence and boundedness
of a Carathéodory solution to (26) as well as (27) on
[0, T ]. Moreover, as the one-sided Lipschitz condition (29)
holds, [21, Cor. 2.4] implies uniqueness of the Carathéodory
solution on [0, T ]. Finally, the proof is completed by noticing
that T > 0 is arbitrary.

Next, we establish an invariance principle for the case
where g is defined by a gradient descent procedure.

Proposition 5. Suppose that the function g in (26) satisfies

g(z) = −∇V (z)> ∀ z ∈ S (30)

for some function V : S → R. Then every Carathéodory
solution x to (26) satisfies

lim
t→∞

[g(x(t))]TS(x(t)) = 0. (31)

Proof. Based on (4), (6), (7), and (28), we can prove that

g(z)>w ≥ ‖[g(z)]TS(z)‖2 ∀ z ∈ S,∀w ∈ G(z). (32)

Then the function V satisfies

∇V (z)w ≤ −‖[g(z)]TS(z)‖2 ∀ z ∈ S,∀w ∈ G(z).

Note that a Filippov solution to (26) is a Carathéodory
solution to (27). Then Lemma 4 and the invariance prin-
ciple for Filippov solutions [22, Th. 3.2] imply that every
Carathéodory solution to (26) approaches the largest invari-
ant set in {z ∈ S : ∃w ∈ G(z) s.t. ∇V (z)w = 0} ⊂ {z ∈
S : ‖[g(z)]TS(z)‖ = 0}. Hence (31) holds as g is continuous
on the compact set S.
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