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Introduction

Hybrid systems: dynamical systems
exhibiting both continuous and
discrete behaviors

t

x

t0 t1 t2 = t3

Modeling framework [GST12;
CT09]

Interconnected hybrid systems

Generalized ISS Lyapunov function
for each subsystem

Small-gain conditions (SG)

Non-ISS dynamics in subsystems

[GST12] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University Press, 2012

[CT09] C. Cai and A. R. Teel, “Characterizations of input-to-state stability for hybrid systems,” Syst. & Control Lett., vol. 58, no. 1, pp. 47–53, 2009
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Literature review

Non-ISS jumps: average dwell-time (ADT) [HM99]

Non-ISS flows: reverse ADT (RADT) [HLT08]

Strategy 1 [LNT14]: increase feedback gains

1 ADT/RADT modifications for ISS Lyapunov functions for subsystems
2 SG for stability of the interconnection

Strategy 2 [Das+12]: cannot apply to mixed non-ISS dynamics

1 SG for a generalized Lyapunov function for the interconnection
2 ADT/RADT modification for stability of the interconnection

In this work, we provide a thorough study on
I the effects of ADT/RADT modifications on feedback gains
I the applicability of the two strategies

[HM99] J. P. Hespanha and A. S. Morse, “Stability of switched systems with average dwell-time,” in 38th IEEE Conf. Decis. Control, vol. 3, 1999,
pp. 2655–2660

[HLT08] J. P. Hespanha, D. Liberzon, and A. R. Teel, “Lyapunov conditions for input-to-state stability of impulsive systems,” Automatica, vol. 44, no.
11, pp. 2735–2744, 2008

[LNT14] D. Liberzon, D. Nešić, and A. R. Teel, “Lyapunov-based small-gain theorems for hybrid systems,” IEEE Trans. Automat. Contr., vol. 59, no.
6, pp. 1395–1410, 2014

[Das+12] S. Dashkovskiy, M. Kosmykov, A. Mironchenko, and L. Naujok, “Stability of interconnected impulsive systems with and without time delays,
using Lyapunov methods,” Nonlinear Anal. Hybrid Syst., vol. 6, no. 3, pp. 899–915, 2012
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Preliminaries for hybrid systems

Hybrid system with input

ẋ ∈ F (x, u), (x, u) ∈ C,
x+ ∈ G(x, u), (x, u) ∈ D.

State x ∈ X ⊂ Rn, input u ∈ U ⊂ Rm

Flow set C ⊂ X × U , flow map F : X × U ⇒ Rn

Jump set D ⊂ X × U , jump map G : X × U ⇒ X
Solutions x : domx→ X defined
on hybrid time domains

domx =
⋃

j=0,1,...

[tj , tj+1]× {j}

t00 t1

x

t2 = t31 t
2

3
j

[CT09] C. Cai and A. R. Teel, “Characterizations of input-to-state stability for hybrid systems,” Syst. & Control Lett., vol. 58, no. 1, pp. 47–53, 2009
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Preliminaries for hybrid systems

Input-to-state stability

ẋ ∈ F (x, u), (x, u) ∈ C,
x+ ∈ G(x, u), (x, u) ∈ D.

State x ∈ X ⊂ Rn, input u ∈ U ⊂ Rm

Definition

A hybrid system is input-to-state stable (ISS) w.r.t. a set A ⊂ X if there exist
β ∈ KL, γ ∈ K∞ such that all solution pairs (x, u) satisfy

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j) + γ(‖u‖(t,j)) ∀ (t, j) ∈ domx.

In the absence of inputs, ISS becomes global asymptotic stability (GAS)

[Son89] E. D. Sontag, “Smooth stabilization implies coprime factorization,” IEEE Trans. Automat. Contr., vol. 34, no. 4, pp. 435–443, 1989
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Preliminaries for hybrid systems

Candidate ISS Lyapunov function

Definition 1

A locally Lipschitz function V : X → R≥0 is a candidate ISS Lyapunov function
w.r.t A if

1 ∃ bounds ψ1, ψ2 ∈ K∞ s.t. ψ1(|x|A) ≤ V (x) ≤ ψ2(|x|A) for all x ∈ X ;

2 ∃ an input gain χ ∈ K∞ and a rate φ ∈ C0(R≥0,R) with φ(0) = 0 s.t.

V (x) ≥ χ(|u|)⇒ ∇vV (x) ≤ −φ(V (x)) ∀ (x, u) ∈ C,∀ v ∈ F (x, u);
3 ∃ a positive definite rate α ∈ C0(R≥0,R≥0) such that

V (y) ≤ max{α(V (x)), χ(|u|)} ∀ (x, u) ∈ D,∀ y ∈ G(x, u).

It is an ISS Lyapunov function if φ(r) > 0 and α(r) < r for all r > 0.

Proposition 1 ([CT09, Prop. 2.7])

A hybrid system is ISS if it admits an ISS Lyapunov function.

[CT09] C. Cai and A. R. Teel, “Characterizations of input-to-state stability for hybrid systems,” Syst. & Control Lett., vol. 58, no. 1, pp. 47–53, 2009

[CT13] C. Cai and A. R. Teel, “Robust input-to-state stability for hybrid systems,” SIAM J. Control Optim., vol. 51, no. 2, pp. 1651–1678, 2013
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Interconnected hybrid systems

Interconnection of two hybrid subsystems

Hybrid system with state x = (x1, x2)

ẋ1 = f1(x), ẋ2 = f2(x), x ∈ C,
x+1 = g1(x), x

+
2 = g2(x), x ∈ D.

Each xi-subsystem regards xj as an input

Assumption 1

Each xi-subsystem (with input xj) admits a candidate ISS Lyapunov function
Vi : Xi → R≥0 with bounds ψ1i, ψ2i, an input gain χi, and rates φi, αi.

For all x = (x1, x2) ∈ C,

V1(x1) ≥ γ1(V2(x2)) ⇒ ∇f1(x)V1(x1) ≤ −φ1(V1(x1)),
V2(x2) ≥ γ2(V1(x1)) ⇒ ∇f2(x)V2(x2) ≤ −φ2(V2(x2))

with γi(r) := χi(ψ
−1
ij (r)) for i = 1, 2

Small-gain condition (SG): the composition γ1 ◦ γ2 < Id
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Interconnected hybrid systems

Small-gain theorem

Assumption 1

Each xi-subsystem (with input xj) admits a candidate ISS Lyapunov function
Vi : Xi → R≥0 with bounds ψ1i, ψ2i, a gain χi, and rates φi, αi.

(SG1) The composition γ1 ◦ γ2 < Id with γi(r) := χi(ψ
−1
1j (r)) for i = 1, 2.

Proposition 2

Suppose Assumption 1 and (SG1) hold. Then V (x) := max{ρ(V1(x1)), V2(x2)}
with ρ in Lemma 1 is a candidate Lyapunov function for the interconnection.

Proposition 3 ([LNT14, Th. III.1 and Cor. III.2])

Suppose Assumption 1 and (SG1) hold with ISS Lyapunov functions V1, V2. Then
V defined in Proposition 2 is a Lyapunov function and ensures GAS.

[LNT14] D. Liberzon, D. Nešić, and A. R. Teel, “Lyapunov-based small-gain theorems for hybrid systems,” IEEE Trans. Automat. Contr., vol. 59, no.
6, pp. 1395–1410, 2014
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Modifying ISS Lyapunov functions

Table of contents

1 Preliminaries for hybrid systems

2 Interconnected hybrid systems

3 Modifying ISS Lyapunov functions

4 Conclusion

Yang, Liberzon & Mironchenko ISS Lyapunov functions for hybrid systems CDC2016 11 / 22



Modifying ISS Lyapunov functions

Candidate exponential ISS Lyapunov functions

Definition 2

A candidate ISS Lyapunov function with rates φ, α satisfying

φ(r) ≡ cr, α(r) ≡ e−dr
for some constants c, d ∈ R is a candidate exponential ISS Lyapunov function with
rate coefficients c, d.
It is an exponential ISS Lyapunov function if c, d > 0.

Assumption 2

Each xi-subsystem admits a candidate exponential ISS Lyapunov function
Vi : Xi → R≥0 with bounds ψ1i, ψ2i, a gain χi, and rate coefficients ci, di.

Yang, Liberzon & Mironchenko ISS Lyapunov functions for hybrid systems CDC2016 12 / 22



Modifying ISS Lyapunov functions

Non-ISS flows: reverse average dwell-time (RADT)

Assumption 2 holds with V1, V2 and rate
coefficients c1, c2 ≤ 0 < d1, d2

Consider solutions that jump fast enough

A solution x admits a reverse average
dwell-time (RADT) τ∗a > 0 [HLT08] if

j − k ≥ (t− s)/τ∗a −N∗0 ∀ t ≥ s
with an integer N∗0 ≥ 1.

[CTG08] Equivalently, domx = dom τ for
an RADT timer τ with

τ̇ = 1/τ∗a , τ ∈ [0, N∗0 ],

τ+ = max{0, τ − 1}, τ ∈ [0, N∗0 ].

tt0 t1 t2 t3 t4

V1

t

=

0

2

t0 t1 t2 t3 t4

[HLT08] J. P. Hespanha, D. Liberzon, and A. R. Teel, “Lyapunov conditions for input-to-state stability of impulsive systems,” Automatica, vol. 44, no.
11, pp. 2735–2744, 2008

[CTG08] C. Cai, A. R. Teel, and R. Goebel, “Smooth Lyapunov functions for hybrid systems Part II: (Pre)Asymptotically stable compact sets,” IEEE
Trans. Automat. Contr., vol. 53, no. 3, pp. 734–748, 2008
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Modifying ISS Lyapunov functions

Non-ISS flows: RADT modification

Assumption 2 holds with V1, V2 and rate
coefficients c1, c2 ≤ 0 < d1, d2

Consider solutions that jump fast enough

Consider the augmented interconnection
with state (x1, x2, τ)

[MYL14, Prop. 6] Provided that
τ∗a < −di/ci, there exists an
Li ∈ (−ciτ∗a , di) s.t.

Wi(xi, τ) := e−LiτVi(xi)

is an exponential ISS Lyapunov function

To establish GAS via SG, it requires
γ1 ◦ γ2 < Id with γi(r) := χi(ψ

−1
1j (e

LjN
∗
0 r))

for i = 1, 2

tt0 t1 t2 t3 t4

V1

W1

t

=

0

2

t0 t1 t2 t3 t4

[MYL14] A. Mironchenko, G. Yang, and D. Liberzon, “Lyapunov small-gain theorems for not necessarily ISS hybrid systems,” in 21st Int. Symp. Math.
Theory Networks Syst., 2014, pp. 1001–1008
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Modifying ISS Lyapunov functions

Non-ISS flows: small-gain theorem

Equivalently:

(SG2) There exists an ε > 0 such that γ1 ◦ γ2 < Id with
γi(r) := χi(ψ

−1
1j ((1 + ε)r)) for i = 1, 2.

Theorem 5

Suppose Assumption 2 holds with rate coefficients c1, c2 ≤ 0 < d1, d2. Provided
that (SG2) is satisfied, the GAS estimate holds for every solution with a small
enough RADT.

Before RADT modification

(SG1) The composition γ1 ◦ γ2 < Id with γi(r) := χi(ψ
−1
1j (r)) for i = 1, 2.

(SG2) is generic in (SG1) (in particular, they are equivalent for linear gains)

RADT modification does not substantially increase the feedback gains

Yang, Liberzon & Mironchenko ISS Lyapunov functions for hybrid systems CDC2016 15 / 22



Modifying ISS Lyapunov functions

Non-ISS jumps: average dwell-time (ADT)

Assumption 2 holds with V1, V2 and rate
coefficients c1, c2 > 0 ≥ d1, d2
Consider solutions that jump slowly enough

A solution x admits an average dwell-time
(ADT) τa > 0 [HM99] if

j − k ≤ (t− s)/τa +N0 ∀ t ≥ s
with an integer N∗0 ≥ 1.

[CTG08] Equivalently, domx = dom τ for
an ADT timer τ with

τ̇ = [0, 1/τa], τ ∈ [0, N0],

τ+ = τ − 1, τ ∈ [1, N0].

tt0 t1 t2 t3 t4

V2

t

=

0

2

t0 t1 t2 t3 t4

[HM99] J. P. Hespanha and A. S. Morse, “Stability of switched systems with average dwell-time,” in 38th IEEE Conf. Decis. Control, vol. 3, 1999,
pp. 2655–2660

[CTG08] C. Cai, A. R. Teel, and R. Goebel, “Smooth Lyapunov functions for hybrid systems Part II: (Pre)Asymptotically stable compact sets,” IEEE
Trans. Automat. Contr., vol. 53, no. 3, pp. 734–748, 2008
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Modifying ISS Lyapunov functions

Non-ISS jumps: ADT modification

Assumption 2 holds with V1, V2 and rate
coefficients c1, c2 > 0 ≥ d1, d2
Consider solutions that jump slowly enough

Consider the augmented interconnection
with state (x1, x2, τ)

[MYL14, Prop. 5] Provided that
τa > −di/ci, there exists an
Li ∈ (−di, ciτa) s.t.

Wi(xi, τ) := eLiτVi(xi)

is an exponential ISS Lyapunov function

To establish GAS via SG, it requires
γ1 ◦ γ2 < Id with γi(r) := eLiN0χi(ψ

−1
1j (r))

for i = 1, 2

tt0 t1 t2 t3 t4

V2

W2

t

=

0

2

t0 t1 t2 t3 t4

[MYL14] A. Mironchenko, G. Yang, and D. Liberzon, “Lyapunov small-gain theorems for not necessarily ISS hybrid systems,” in 21st Int. Symp. Math.
Theory Networks Syst., 2014, pp. 1001–1008
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Modifying ISS Lyapunov functions

Non-ISS jumps: small-gain theorem

Equivalently:

(SG3) There exists an ε > 0 such that γ1 ◦ γ2 < Id with
γi(r) := (1 + ε)e−diχi(ψ

−1
1j (r)) for i = 1, 2.

Theorem 6

Suppose Assumption 2 holds with rate coefficients c1, c2 > 0 ≥ d1, d2. Provided
that (SG3) is satisfied, the GAS estimate holds for every solution with a large
enough ADT.

Before ADT modification

(SG1) The composition γ1 ◦ γ2 < Id with γi(r) := χi(ψ
−1
1j (r)) for i = 1, 2.

Unlike (SG2) for RADT, (SG3) is not generic in (SG1)

ADT modification substantially increases the feedback gains
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Modifying ISS Lyapunov functions

Non-ISS jumps: an alternate construction

Assumption 2 holds with rate coefficients c1, c2 > 0 ≥ d1, d2
Linear gains: γ1(r) ≡ ξ1r and γ2(r) ≡ ξ2r for some constant ξ1, ξ2 > 0

Construct a candidate exponential Lyapunov function for the interconnection

Establish GAS under ADT

Advantage: it requires (SG1: ξ1ξ2 < 1) instead of (SG3: ξ1ξ2 < ed1+d2)

Disadvantage: it requires linear gains
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Conclusion

Table of contents

1 Preliminaries for hybrid systems

2 Interconnected hybrid systems

3 Modifying ISS Lyapunov functions

4 Conclusion

Yang, Liberzon & Mironchenko ISS Lyapunov functions for hybrid systems CDC2016 20 / 22



Conclusion

Summary

Stability of interconnected hybrid systems

Lyapunov function constructions based on small-gain conditions

Non-ISS subsystems: ADT/RADT modifications

Dynamics Small-gain condition Remark

ISS subsystems (SG1)
Non-ISS flows (SG2) Generic in (SG1)
Non-ISS jumps (SG3) Not generic in (SG1)
Non-ISS jumps (SG1) Linear gains

Non-ISS flow and jump (SG4) Not generic in (SG1)
Non-ISS flow and jump (SG1) Linear gains
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Conclusion

Future research topics

Generalization for hybrid network of more than 2 subsystems

Modifying non-exponential ISS Lyapunov functions
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