Stabilization of interconnected switched control-affine systems via a Lyapunov-based small-gain approach

Guosong Yang¹ Daniel Liberzon¹ Zhong-Ping Jiang²

¹Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801

²Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201

May 26, 2017

Introduction

Switched system

- Switching is ubiquitous in realistic system models, such as
 - Thermostat
 - Gear tranmission
 - Power supply
- Structure of a switched system
 - A family of dynamics, called modes
 - A sequence of events, called switches
- In this work: time-dependent, uncontrolled switching

Presentation outline

- Preliminaries
- Interconnected switched systems and small-gain theorem
- Stabilization via a small-gain approach

Nonlinear switched system with input

$$\dot{x} = f_{\sigma}(x, w), \qquad x(0) = x_0$$

- State $x \in \mathbb{R}^n$, disturbance $w \in \mathbb{R}^m$
- A family of modes $f_p, p \in \mathcal{P}$, with an index set \mathcal{P}
- A right-continuous, piecewise constant switching signal $\sigma : \mathbb{R}_+ \to \mathcal{P}$ that indicates the active mode $\sigma(t)$
- Solution $x(\cdot)$ is absolutely continuous (no state jump)

Stability notions

Definition (GAS)

A continuous-time system is globally asymptotically stable (GAS) if there is a function $\beta \in \mathcal{KL}$ s.t. for all initial state x_0 ,

 $|x(t)| \le \beta(|x_0|, t) \qquad \forall t \ge 0.$

- A function $\alpha : \mathbb{R}_+ \to \mathbb{R}_+$ is of class \mathcal{K} if it is continuous, positive definite and strictly increasing; $\alpha \in \mathcal{K}$ is of class \mathcal{K}_{∞} if $\lim_{r \to \infty} \alpha(r) = \infty$, such as $\alpha(r) = r^2$ or |r|
- A function $\gamma : \mathbb{R}_+ \to \mathbb{R}_+$ is of class \mathcal{L} if it is continuous, strictly decreasing and $\lim_{t\to\infty} \gamma(t) = 0$, such as $\gamma(t) = e^{-t}$
- A function $\beta : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+$ is of class \mathcal{KL} if $\beta(\cdot, t) \in \mathcal{K}$ for each fixed t, and $\beta(r, \cdot) \in \mathcal{L}$ for each fixed r > 0, such as $\beta(r, t) = r^2 e^{-t}$

Stability notions

Definition (GAS)

A continuous-time system is globally asymptotically stable (GAS) if there is a function $\beta \in \mathcal{KL}$ s.t. for all initial state x_0 ,

$$|x(t)| \le \beta(|x_0|, t) \qquad \forall t \ge 0.$$

The switched system may be unstable even if all individual modes are GAS

Stability notions

Definition (GAS)

A continuous-time system is globally asymptotically stable (GAS) if there is a function $\beta \in \mathcal{KL}$ s.t. for all initial state x_0 ,

 $|x(t)| \le \beta(|x_0|, t) \qquad \forall t \ge 0.$

Definition (ISpS [JTP94])

A continuous-time system is input-to-state practically stable (ISpS) if there are functions $\beta \in \mathcal{KL}$, $\gamma \in \mathcal{K}_{\infty}$ and a constant $\varepsilon \ge 0$ s.t. for all x_0 and disturbance w, $|x(t)| \le \beta(|x_0|, t) + \gamma(||w||) + \varepsilon \quad \forall t \ge 0.$

• When $\varepsilon = 0$, ISpS becomes input-to-state stability (ISS) [Son89]

• When $\varepsilon = 0$ and $\gamma \equiv 0$, ISpS becomes GAS

 [[]JTP94] Z.-P. Jiang, A. R. Teel, and L. Praly, Mathematics of Control, Signals, and Systems, 1994
 [Son89] E. D. Sontag, IEEE Transactions on Automatic Control, 1989

$$\dot{x} = f_{\sigma}(x, w), \qquad x(0) = x_0$$

A common Lyapunov function

The switched system is GAS if

• it admits a Lyapunov function V which decreases along the solution in all modes:

$$D_{f_p}V(x,w) \le -\lambda V(x)$$

with a constant $\lambda > 0$.

[PW96] L. Praly and Y. Wang, Mathematics of Control, Signals, and Systems, 1996

$$\dot{x} = f_{\sigma}(x, w), \qquad x(0) = x_0$$

A common Lyapunov functionMultiple Lyapunov functions

The switched system is GAS if

 each mode admits a Lyapunov function V_p which decreases along the solution when that mode is active:

$$D_{f_p}V_p(x,w) \le -\lambda V_p(x),$$

and their values at switches are decreasing:

 $V_{\sigma(t_k)}(x(t_k)) \le V_{\sigma(t_l)}(x(t_l))$

for all switches $t_k > t_l$.

[PD91] P. Peleties and R. DeCarlo, in 1991 American Control Conference, 1991

[Bra98] M. S. Branicky, IEEE Transactions on Automatic Control, 1998

$$\dot{x} = f_{\sigma}(x, w), \qquad x(0) = x_0$$

- A common Lyapunov function
- Multiple Lyapunov functions
- Dwell-time [Mor96], Average dwell-time (ADT) [HM99]

The switched system is GAS if

 each mode admits a Lyapunov function V_p which decreases along the solution when that mode is active:

$$D_{f_p}V_p(x,w) \le -\lambda V_p(x),$$

their values after each switch is bounded in ratio: ∃µ ≥ 1 s.t.

 $V_p(x) \le \mu V_q(x),$

• there is an ADT $\tau_a > \ln(\mu)/\lambda$ with an integer $N_0 \ge 1$:

 $N_{\sigma}(t,\tau) \le N_0 + (t-\tau)/\tau_a.$

 [Mor96]
 A. S. Morse, IEEE Transactions on Automatic Control, 1996

 [HM99]
 J. P. Hespanha and A. S. Morse, in 38th IEEE Conference on Decision and Control, 1999
 6/12

$$\dot{x} = f_{\sigma}(x, w), \qquad x(0) = x_0$$

- A common Lyapunov function
- Multiple Lyapunov functions
- Dwell-time, ADT
- Further results under slow switching:
 - ISS with dwell-time [XWL01]
 - ISS and integral-ISS with ADT [VCL07]
 - ISS and IOSS with ADT [ML12]

The switched system is GAS if

 each mode admits a Lyapunov function V_p which decreases along the solution when that mode is active:

 $D_{f_p}V_p(x,w) \le -\lambda V_p(x),$

• their values after each switch is bounded in ratio: $\exists \mu \ge 1$ s.t.

 $V_p(x) \le \mu V_q(x),$

• there is an ADT $\tau_a > \ln(\mu)/\lambda$ with an integer $N_0 \ge 1$:

 $N_{\sigma}(t,\tau) \le N_0 + (t-\tau)/\tau_a.$

[[]XWL01] W. Xie, C. Wen, and Z. Li, IEEE Transactions on Automatic Control, 2001

[[]VCL07] L. Vu, D. Chatterjee, and D. Liberzon, Automatica, 2007

[[]ML12] M. A. Müller and D. Liberzon, Automatica, 2012

Interconnected switched systems

An interconnection of switched systems with state $x = (x_1, x_2)$ and external disturbance w

$$\dot{x}_1 = f_{1,\sigma_1}(x_1, x_2, w),$$

 $\dot{x}_2 = f_{2,\sigma_2}(x_1, x_2, w).$

- Each x_i -subsystem regards x_j as internal disturbance
- \blacksquare The switchings σ_1,σ_2 are independent
- Each x_i -subsystem has stabilizing modes in $\mathcal{P}_{s,i}$ and destabilizing ones in $\mathcal{P}_{u,i}$
- Objective: establish ISpS of the interconnection using
 - Generalized ISpS-Lyapunov functions
 - Average dwell-times (ADT)
 - Time-ratios
 - A small-gain condition

Assumptions

- (Generalized ISpS-Lyapunov) For each x_i -subsystem
 - Each $p_s \in \mathcal{P}_{s,i}$ admits an ISpS-Lya function V_{i,p_s} that decreases when active and

 $V_{i,p_s}(x_i) \ge \max\{\chi_i(V_{j,p_j}(x_j)), \, \chi_i^w(|w|), \, \delta_i\};$

- Each $p_u \in \mathcal{P}_{u,i}$ admits a function V_{i,p_u} that may increase when active;
- $-V_{i,p}(x_i) \leq \mu_i V_{i,q}(x_i)$ for all $p, q \in \mathcal{P}_i$.
- (ADT) There is a large enough ADT $\tau_{a,i}$.
- (Time-ratio) There is a small enough time-ratio $\rho_i \in [0, 1)$.

Lyapunov-based small-gain theorem

- (Generalized ISpS-Lyapunov) For each x_i -subsystem
 - Each $p_s \in \mathcal{P}_{s,i}$ admits an ISpS-Lya function V_{i,p_s} that decreases when active and

 $V_{i,p_s}(x_i) \ge \max\{\chi_i(V_{j,p_j}(x_j)), \, \chi_i^w(|w|), \, \delta_i\};$

- Each $p_u \in \mathcal{P}_{u,i}$ admits a function V_{i,p_u} that may increase when active;
- $V_{i,p}(x_i) \le \mu_i V_{i,q}(x_i) \text{ for all } p, q \in \mathcal{P}_i.$
- (ADT) There is a large enough ADT $\tau_{a,i}$.
- (Time-ratio) There is a small enough time-ratio $\rho_i \in [0, 1)$.

Theorem (Small-Gain)

The interconnection is ISpS provided that the small-gain condition

$$\chi_1^* \circ \chi_2^* < \mathrm{Id}$$

holds with $\chi_i^* := e^{\Theta_i} \chi_i$.

Proof: Hybrid ISpS-Lyapunov function

- (Generalized ISpS-Lyapunov) For each x_i -subsystem
 - Each $p_s \in \mathcal{P}_{s,i}$ admits an ISpS-Lya function V_{i,p_s} that decreases when active and

 $V_{i,p_s}(x_i) \ge \max\{\chi_i(V_{j,p_j}(x_j)), \, \chi_i^w(|w|), \, \delta_i\};$

- Each $p_u \in \mathcal{P}_{u,i}$ admits a function V_{i,p_u} that may increase when active;
- $V_{i,p}(x_i) \le \mu_i V_{i,q}(x_i) \text{ for all } p, q \in \mathcal{P}_i.$
- (ADT) There is a large enough ADT $\tau_{a,i}$.
- (Time-ratio) There is a small enough time-ratio $\rho_i \in [0, 1)$.

Proof: Hybrid ISpS-Lyapunov function

- (Generalized ISpS-Lyapunov) For each x_i -subsystem
 - Each $p_s \in \mathcal{P}_{s,i}$ admits an ISpS-Lya function V_{i,p_s} that decreases when active and

 $V_{i,p_s}(x_i) \ge \max\{\chi_i(V_{j,p_j}(x_j)), \, \chi_i^w(|w|), \, \delta_i\};$

- Each $p_u \in \mathcal{P}_{u,i}$ admits a function V_{i,p_u} that may increase when active;
- $V_{i,p}(x_i) \le \mu_i V_{i,q}(x_i) \text{ for all } p, q \in \mathcal{P}_i.$
- (ADT) There is a large enough ADT $\tau_{a,i}$.
- (Time-ratio) There is a small enough time-ratio $\rho_i \in [0, 1)$.
- Auxiliary timer $au_i \in [0, \Theta_i]$
- Hybrid ISpS-Lya for subsystem $V_i := V_{i,\sigma_i} e^{\tau_i}$ with $\chi_i^* := e^{\Theta_i} \chi_i$
- Small-gain $\chi_1^* \circ \chi_2^* < \mathrm{Id}$
- Hybrid ISpS-Lya function $V := \max\{\psi(V_1), V_2\}$

[JMW96] Z.-P. Jiang, I. M. Y. Mareels, and Y. Wang, Automatica, 1996

Proof: Hybrid ISpS-Lyapunov function

- (Generalized ISpS-Lyapunov) For each x_i -subsystem
 - Each $p_s \in \mathcal{P}_{s,i}$ admits an ISpS-Lya function V_{i,p_s} that decreases when active and

 $V_{i,p_s}(x_i) \ge \max\{\chi_i(V_{j,p_j}(x_j)), \chi_i^w(|w|), \delta_i\};$

- Each $p_u \in \mathcal{P}_{u,i}$ admits a function V_{i,p_u} that may increase when active;
- $V_{i,p}(x_i) \le \mu_i V_{i,q}(x_i) \text{ for all } p, q \in \mathcal{P}_i.$
- (ADT) There is a large enough ADT $\tau_{a,i}$.
- (Time-ratio) There is a small enough time-ratio $\rho_i \in [0, 1)$.
- Auxiliary timer $\tau_i \in [0, \Theta_i]$
- Hybrid ISpS-Lya for subsystem $V_i := V_{i,\sigma_i} e^{\tau_i}$ with $\chi_i^* := e^{\Theta_i} \chi_i$
- Small-gain $\chi_1^* \circ \chi_2^* < \mathrm{Id}$
- Hybrid ISpS-Lya function $V := \max\{\psi(V_1), V_2\}$

Stabilization via a small-gain approach

An interconnection of switched control-affine systems with state $x = (x_1, x_2)$, external disturbance w and controls u_1, u_2

$$\dot{x}_1 = f^0_{1,\sigma_1}(x,w) + G_{1,\sigma_1}(x,w) u_1,$$

$$\dot{x}_2 = f^0_{2,\sigma_2}(x,w) + G_{2,\sigma_2}(x,w) u_2.$$

• (Generalized ISS-Lyapunov) For each x_i -subsystem in open-loop

– Each $p_s \in \mathcal{P}_{s,i}$ admits an ISS-Lya function V_{i,p_s} that decreases when active and $V_{i,p_s}(x_i) \geq \max\{\chi_i^0(V_{j,p_j}(x_j)), \, \chi_i^w(|w|)\};$

Proposition (Gain assignment)

For each $\chi_i \in \mathcal{K}_{\infty}$ and $\delta_i > 0$, there is a feedback control $u_i = -\nu_{i,\sigma_i}(|x_i|)\nabla V_{i,\sigma_i}$ s.t. in closed-loop, each V_{i,p_s} decreases when active and

$$V_{i,p_s}(x_i) \ge \max\{\chi_i(V_{j,p_j}(x_j)), \, \chi_i^w(|w|), \, \delta_i\}.$$

[JM97] Z.-P. Jiang and I. M. Y. Mareels, IEEE Transactions on Automatic Control, 1997

Stabilization via a small-gain approach

An interconnection of switched control-affine systems with state $x = (x_1, x_2)$, external disturbance w and controls u_1, u_2

$$\dot{x}_1 = f^0_{1,\sigma_1}(x,w) + G_{1,\sigma_1}(x,w) u_1,$$

$$\dot{x}_2 = f^0_{2,\sigma_2}(x,w) + G_{2,\sigma_2}(x,w) u_2.$$

• (Generalized ISS-Lyapunov) For each x_i -subsystem in open-loop

– Each $p_s \in \mathcal{P}_{s,i}$ admits an ISS-Lya function V_{i,p_s} that decreases when active and $V_{i,p_s}(x_i) \ge \max\{\chi_i^0(V_{j,p_j}(x_j)), \chi_i^w(|w|)\};$

Theorem

For each $\varepsilon > 0$, there are feedback controls u_1, u_2 s.t. the interconnection in closed-loop is ISpS with the constant ε , i.e., there are $\beta \in \mathcal{KL}, \gamma \in \mathcal{K}_{\infty}$ s.t.

 $|x(t)| \le \beta(|x_0|, t) + \gamma(||w||) + \varepsilon \qquad \forall t \ge 0.$

Summary

- Interconnected switched systems
- A Lyapunov-based small-gain theorem for ISpS
 - Hybrid ISpS-Lyapunov functions and a small-gain condition
 - Increase in internal gains due to switching and destabilizing modes
- Stabilization via a small-gain approach
 - Gain assignment using feedback control