Stabilization of interconnected switched control-affine systems via a Lyapunov-based small-gain approach

Guosong Yang ${ }^{1}$ Daniel Liberzon ${ }^{1}$ Zhong-Ping Jiang ${ }^{2}$
${ }^{1}$ Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
${ }^{2}$ Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201

May 26, 2017

Switched system

- Switching is ubiquitous in realistic system models, such as
- Thermostat
- Gear tranmission
- Power supply
- Structure of a switched system
- A family of dynamics, called modes
- A sequence of events, called switches

■ In this work: time-dependent, uncontrolled switching

Presentation outline

- Preliminaries
- Interconnected switched systems and small-gain theorem
- Stabilization via a small-gain approach

Nonlinear switched system with input

$$
\dot{x}=f_{\sigma}(x, w), \quad x(0)=x_{0}
$$

- State $x \in \mathbb{R}^{n}$, disturbance $w \in \mathbb{R}^{m}$
- A family of modes $f_{p}, p \in \mathcal{P}$, with an index set \mathcal{P}
- A right-continuous, piecewise constant switching signal $\sigma: \mathbb{R}_{+} \rightarrow \mathcal{P}$ that indicates the active mode $\sigma(t)$
- Solution $x(\cdot)$ is absolutely continuous (no state jump)

Stability notions

Definition (GAS)

A continuous-time system is globally asymptotically stable (GAS) if there is a function $\beta \in \mathcal{K} \mathcal{L}$ s.t. for all initial state x_{0},

$$
|x(t)| \leq \beta\left(\left|x_{0}\right|, t\right) \quad \forall t \geq 0 .
$$

- A function $\alpha: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is of class \mathcal{K} if it is continuous, positive definite and strictly increasing; $\alpha \in \mathcal{K}$ is of class \mathcal{K}_{∞} if $\lim _{r \rightarrow \infty} \alpha(r)=\infty$, such as $\alpha(r)=r^{2}$ or $|r|$
- A function $\gamma: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is of class \mathcal{L} if it is continuous, strictly decreasing and $\lim _{t \rightarrow \infty} \gamma(t)=0$, such as $\gamma(t)=e^{-t}$
- A function $\beta: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is of class $\mathcal{K} \mathcal{L}$ if $\beta(\cdot, t) \in \mathcal{K}$ for each fixed t, and $\beta(r, \cdot) \in \mathcal{L}$ for each fixed $r>0$, such as $\beta(r, t)=r^{2} e^{-t}$

Stability notions

Definition (GAS)

A continuous-time system is globally asymptotically stable (GAS) if there is a function $\beta \in \mathcal{K} \mathcal{L}$ s.t. for all initial state x_{0},

$$
|x(t)| \leq \beta\left(\left|x_{0}\right|, t\right) \quad \forall t \geq 0 .
$$

- The switched system may be unstable even if all individual modes are GAS

Stability notions

Definition (GAS)
A continuous-time system is globally asymptotically stable (GAS) if there is a function $\beta \in \mathcal{K} \mathcal{L}$ s.t. for all initial state x_{0},

$$
|x(t)| \leq \beta\left(\left|x_{0}\right|, t\right) \quad \forall t \geq 0 .
$$

Definition (ISpS [JTP94])

A continuous-time system is input-to-state practically stable (ISpS) if there are functions $\beta \in \mathcal{K} \mathcal{L}, \gamma \in \mathcal{K}_{\infty}$ and a constant $\varepsilon \geq 0$ s.t. for all x_{0} and disturbance w,

$$
|x(t)| \leq \beta\left(\left|x_{0}\right|, t\right)+\gamma(\|w\|)+\varepsilon \quad \forall t \geq 0 .
$$

- When $\varepsilon=0, \mathrm{ISpS}$ becomes input-to-state stability (ISS) [Son89]
- When $\varepsilon=0$ and $\gamma \equiv 0$, ISpS becomes GAS
[JTP94]
Z.-P. Jiang, A. R. Teel, and L. Praly, Mathematics of Control, Signals, and Systems, 1994
[Son89]
E. D. Sontag, IEEE Transactions on Automatic Control, 1989

Lyapunov characterizations

$$
\dot{x}=f_{\sigma}(x, w), \quad x(0)=x_{0}
$$

- A common Lyapunov function

The switched system is GAS if

- it admits a Lyapunov function V which decreases along the solution in all modes:

$$
D_{f_{p}} V(x, w) \leq-\lambda V(x)
$$

with a constant $\lambda>0$.

Lyapunov characterizations

$$
\dot{x}=f_{\sigma}(x, w), \quad x(0)=x_{0}
$$

- A common Lyapunov function
- Multiple Lyapunov functions

The switched system is GAS if

- each mode admits a Lyapunov function V_{p} which decreases along the solution when that mode is active:

$$
D_{f_{p}} V_{p}(x, w) \leq-\lambda V_{p}(x),
$$

- and their values at switches are decreasing:

$$
V_{\sigma\left(t_{k}\right)}\left(x\left(t_{k}\right)\right) \leq V_{\sigma\left(t_{l}\right)}\left(x\left(t_{l}\right)\right)
$$

for all switches $t_{k}>t_{l}$.

Lyapunov characterizations

$$
\dot{x}=f_{\sigma}(x, w), \quad x(0)=x_{0}
$$

- A common Lyapunov function
- Multiple Lyapunov functions
- Dwell-time [Mor96], Average dwell-time (ADT) [HM99]

The switched system is GAS if

- each mode admits a Lyapunov function V_{p} which decreases along the solution when that mode is active:

$$
D_{f_{p}} V_{p}(x, w) \leq-\lambda V_{p}(x),
$$

- their values after each switch is bounded in ratio: $\exists \mu \geq 1$ s.t.

$$
V_{p}(x) \leq \mu V_{q}(x),
$$

- there is an ADT $\tau_{a}>\ln (\mu) / \lambda$ with an integer $N_{0} \geq 1$:

$$
N_{\sigma}(t, \tau) \leq N_{0}+(t-\tau) / \tau_{a}
$$

Lyapunov characterizations

$$
\dot{x}=f_{\sigma}(x, w), \quad x(0)=x_{0}
$$

- A common Lyapunov function
- Multiple Lyapunov functions

■ Dwell-time, ADT

- Further results under slow switching:
- ISS with dwell-time [XWL01]
- ISS and integral-ISS with ADT [VCLO7]
- ISS and IOSS with ADT [ML12]

The switched system is GAS if

- each mode admits a Lyapunov function V_{p} which decreases along the solution when that mode is active:

$$
D_{f_{p}} V_{p}(x, w) \leq-\lambda V_{p}(x),
$$

- their values after each switch is bounded in ratio: $\exists \mu \geq 1$ s.t.

$$
V_{p}(x) \leq \mu V_{q}(x),
$$

- there is an ADT $\tau_{a}>\ln (\mu) / \lambda$ with an integer $N_{0} \geq 1$:

$$
N_{\sigma}(t, \tau) \leq N_{0}+(t-\tau) / \tau_{a}
$$

[^0]
Interconnected switched systems

- An interconnection of switched systems with state $x=\left(x_{1}, x_{2}\right)$ and external disturbance w

$$
\begin{aligned}
\dot{x}_{1} & =f_{1, \sigma_{1}}\left(x_{1}, x_{2}, w\right) \\
\dot{x}_{2} & =f_{2, \sigma_{2}}\left(x_{1}, x_{2}, w\right)
\end{aligned}
$$

- Each x_{i}-subsystem regards x_{j} as internal disturbance
- The switchings σ_{1}, σ_{2} are independent
- Each x_{i}-subsystem has stabilizing modes in $\mathcal{P}_{s, i}$ and destabilizing ones in $\mathcal{P}_{u, i}$
- Objective: establish ISpS of the interconnection using
- Generalized ISpS-Lyapunov functions
- Average dwell-times (ADT)
- Time-ratios
- A small-gain condition

Assumptions

- (Generalized ISpS-Lyapunov) For each x_{i}-subsystem
- Each $p_{s} \in \mathcal{P}_{s, i}$ admits an ISpS-Lya function $V_{i, p_{s}}$ that decreases when active and

$$
V_{i, p_{s}}\left(x_{i}\right) \geq \max \left\{\chi_{i}\left(V_{j, p_{j}}\left(x_{j}\right)\right), \chi_{i}^{w}(|w|), \delta_{i}\right\}
$$

- Each $p_{u} \in \mathcal{P}_{u, i}$ admits a function $V_{i, p_{u}}$ that may increase when active;
- $V_{i, p}\left(x_{i}\right) \leq \mu_{i} V_{i, q}\left(x_{i}\right)$ for all $p, q \in \mathcal{P}_{i}$.
- (ADT) There is a large enough ADT $\tau_{a, i}$.
- (Time-ratio) There is a small enough time-ratio $\rho_{i} \in[0,1)$.

Lyapunov-based small-gain theorem

- (Generalized ISpS-Lyapunov) For each x_{i}-subsystem
- Each $p_{s} \in \mathcal{P}_{s, i}$ admits an ISpS-Lya function $V_{i, p_{s}}$ that decreases when active and

$$
V_{i, p_{s}}\left(x_{i}\right) \geq \max \left\{\chi_{i}\left(V_{j, p_{j}}\left(x_{j}\right)\right), \chi_{i}^{w}(|w|), \delta_{i}\right\}
$$

- Each $p_{u} \in \mathcal{P}_{u, i}$ admits a function $V_{i, p_{u}}$ that may increase when active;
- $V_{i, p}\left(x_{i}\right) \leq \mu_{i} V_{i, q}\left(x_{i}\right)$ for all $p, q \in \mathcal{P}_{i}$.
- (ADT) There is a large enough ADT $\tau_{a, i}$.
- (Time-ratio) There is a small enough time-ratio $\rho_{i} \in[0,1)$.

Theorem (Small-Gain)

The interconnection is ISpS provided that the small-gain condition

$$
\chi_{1}^{*} \circ \chi_{2}^{*}<\operatorname{Id}
$$

holds with $\chi_{i}^{*}:=e^{\Theta_{i}} \chi_{i}$.

Proof: Hybrid ISpS-Lyapunov function

- (Generalized ISpS-Lyapunov) For each x_{i}-subsystem
- Each $p_{s} \in \mathcal{P}_{s, i}$ admits an ISpS-Lya function $V_{i, p_{s}}$ that decreases when active and

$$
V_{i, p_{s}}\left(x_{i}\right) \geq \max \left\{\chi_{i}\left(V_{j, p_{j}}\left(x_{j}\right)\right), \chi_{i}^{w}(|w|), \delta_{i}\right\}
$$

- Each $p_{u} \in \mathcal{P}_{u, i}$ admits a function $V_{i, p_{u}}$ that may increase when active;
- $V_{i, p}\left(x_{i}\right) \leq \mu_{i} V_{i, q}\left(x_{i}\right)$ for all $p, q \in \mathcal{P}_{i}$.
- (ADT) There is a large enough ADT $\tau_{a, i}$.
- (Time-ratio) There is a small enough time-ratio $\rho_{i} \in[0,1)$.
- Auxiliary timer $\tau_{i} \in\left[0, \Theta_{i}\right]$
- Hybrid ISpS-Lya for subsystem $V_{i}:=V_{i, \sigma_{i}} e^{\tau_{i}}$ with $\chi_{i}^{*}:=e^{\Theta_{i}} \chi_{i}$

Proof: Hybrid ISpS-Lyapunov function

- (Generalized ISpS-Lyapunov) For each x_{i}-subsystem
- Each $p_{s} \in \mathcal{P}_{s, i}$ admits an ISpS-Lya function $V_{i, p_{s}}$ that decreases when active and

$$
V_{i, p_{s}}\left(x_{i}\right) \geq \max \left\{\chi_{i}\left(V_{j, p_{j}}\left(x_{j}\right)\right), \chi_{i}^{w}(|w|), \delta_{i}\right\}
$$

- Each $p_{u} \in \mathcal{P}_{u, i}$ admits a function $V_{i, p_{u}}$ that may increase when active;
- $V_{i, p}\left(x_{i}\right) \leq \mu_{i} V_{i, q}\left(x_{i}\right)$ for all $p, q \in \mathcal{P}_{i}$.
- (ADT) There is a large enough ADT $\tau_{a, i}$.
- (Time-ratio) There is a small enough time-ratio $\rho_{i} \in[0,1)$.
- Auxiliary timer $\tau_{i} \in\left[0, \Theta_{i}\right]$
- Hybrid ISpS-Lya for subsystem $V_{i}:=V_{i, \sigma_{i}} e^{\tau_{i}}$ with $\chi_{i}^{*}:=e^{\Theta_{i}} \chi_{i}$
- Small-gain $\chi_{1}^{*} \circ \chi_{2}^{*}<\mathrm{Id}$
- Hybrid ISpS-Lya function $V:=\max \left\{\psi\left(V_{1}\right), V_{2}\right\}$

Proof: Hybrid ISpS-Lyapunov function

- (Generalized ISpS-Lyapunov) For each x_{i}-subsystem
- Each $p_{s} \in \mathcal{P}_{s, i}$ admits an ISpS-Lya function $V_{i, p_{s}}$ that decreases when active and

$$
V_{i, p_{s}}\left(x_{i}\right) \geq \max \left\{\chi_{i}\left(V_{j, p_{j}}\left(x_{j}\right)\right), \chi_{i}^{w}(|w|), \delta_{i}\right\}
$$

- Each $p_{u} \in \mathcal{P}_{u, i}$ admits a function $V_{i, p_{u}}$ that may increase when active;
- $V_{i, p}\left(x_{i}\right) \leq \mu_{i} V_{i, q}\left(x_{i}\right)$ for all $p, q \in \mathcal{P}_{i}$.
- (ADT) There is a large enough ADT $\tau_{a, i}$.
- (Time-ratio) There is a small enough time-ratio $\rho_{i} \in[0,1)$.
- Auxiliary timer $\tau_{i} \in\left[0, \Theta_{i}\right]$
- Hybrid ISpS-Lya for subsystem $V_{i}:=V_{i, \sigma_{i}} e^{\tau_{i}}$ with $\chi_{i}^{*}:=e^{\Theta_{i}} \chi_{i}$
- Small-gain $\chi_{1}^{*} \circ \chi_{2}^{*}<\mathrm{Id}$
- Hybrid ISpS-Lya function $V:=\max \left\{\psi\left(V_{1}\right), V_{2}\right\}$

Stabilization via a small-gain approach

- An interconnection of switched control-affine systems with state $x=\left(x_{1}, x_{2}\right)$, external disturbance w and controls u_{1}, u_{2}

$$
\begin{aligned}
& \dot{x}_{1}=f_{1, \sigma_{1}}^{0}(x, w)+G_{1, \sigma_{1}}(x, w) u_{1}, \\
& \dot{x}_{2}=f_{2, \sigma_{2}}^{0}(x, w)+G_{2, \sigma_{2}}(x, w) u_{2} .
\end{aligned}
$$

- (Generalized ISS-Lyapunov) For each x_{i}-subsystem in open-loop
- Each $p_{s} \in \mathcal{P}_{s, i}$ admits an ISS-Lya function $V_{i, p_{s}}$ that decreases when active and

$$
V_{i, p_{s}}\left(x_{i}\right) \geq \max \left\{\chi_{i}^{0}\left(V_{j, p_{j}}\left(x_{j}\right)\right), \chi_{i}^{w}(|w|)\right\} ;
$$

Proposition (Gain assignment)
For each $\chi_{i} \in \mathcal{K}_{\infty}$ and $\delta_{i}>0$, there is a feedback control $u_{i}=-\nu_{i, \sigma_{i}}\left(\left|x_{i}\right|\right) \nabla V_{i, \sigma_{i}}$ s.t. in closed-loop, each $V_{i, p_{s}}$ decreases when active and

$$
V_{i, p_{s}}\left(x_{i}\right) \geq \max \left\{\chi_{i}\left(V_{j, p_{j}}\left(x_{j}\right)\right), \chi_{i}^{w}(|w|), \delta_{i}\right\} .
$$

Stabilization via a small-gain approach

- An interconnection of switched control-affine systems with state $x=\left(x_{1}, x_{2}\right)$, external disturbance w and controls u_{1}, u_{2}

$$
\begin{aligned}
& \dot{x}_{1}=f_{1, \sigma_{1}}^{0}(x, w)+G_{1, \sigma_{1}}(x, w) u_{1}, \\
& \dot{x}_{2}=f_{2, \sigma_{2}}^{0}(x, w)+G_{2, \sigma_{2}}(x, w) u_{2} .
\end{aligned}
$$

- (Generalized ISS-Lyapunov) For each x_{i}-subsystem in open-loop
- Each $p_{s} \in \mathcal{P}_{s, i}$ admits an ISS-Lya function $V_{i, p_{s}}$ that decreases when active and

$$
V_{i, p_{s}}\left(x_{i}\right) \geq \max \left\{\chi_{i}^{0}\left(V_{j, p_{j}}\left(x_{j}\right)\right), \chi_{i}^{w}(|w|)\right\} ;
$$

Theorem
For each $\varepsilon>0$, there are feedback controls u_{1}, u_{2} s.t. the interconnection in closed-loop is ISpS with the constant ε, i.e., there are $\beta \in \mathcal{K} \mathcal{L}, \gamma \in \mathcal{K}_{\infty}$ s.t.

$$
|x(t)| \leq \beta\left(\left|x_{0}\right|, t\right)+\gamma(\|w\|)+\varepsilon \quad \forall t \geq 0 .
$$

Summary

- Interconnected switched systems
- A Lyapunov-based small-gain theorem for ISpS
- Hybrid ISpS-Lyapunov functions and a small-gain condition
- Increase in internal gains due to switching and destabilizing modes
- Stabilization via a small-gain approach
- Gain assignment using feedback control

[^0]: [XWL01] W. Xie, C. Wen, and Z. Li, IEEE Transactions on Automatic Control, 2001
 [VCL07] L. Vu, D. Chatterjee, and D. Liberzon, Automatica, 2007
 [ML12] M. A. Müller and D. Liberzon, Automatica, 2012

