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Motivation: How Much Data Rate Is Needed for Control?

Control over digital communication:

• Sensor collects information about state/output

• Information is encoded for digital transmission

• Transmission is decoded to generate control input 

for tasks such as stabilization, ensuring set invariance, etc.


How much data rate is needed?

• Described by topological entropy and variants

• Complexity: exponential growth rate of # of distinguishable trajectories


Entropy notions in systems and control:

• Topological entropy [Adler-Konheim-McAndrew’65; Bowen’71; Dinaburg’70]

• Nonautonomous systems [Kolyada-Snoha’96; Kawan-Latushkin’16]

• Switched linear systems [Y-Schmidt-Liberzon-Hespanha’20; Berger-Junger’20]

• Control entropy [Nair-Evans-Mareels-Moran’04; Colonious-Kawan’09; Colonius’12]

• Estimation entropy [Savkin’06; Matveev-Pogromsky’16; Liberzon-Mitra’18]
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Entropy Definition

 


• : known initial set, compact with nonempty interior


• : solution at time  with initial state 


Entropy definition:


• Pick norm , time horizon  and resolution  (eventually  and )


• A set  of initial states is -spanning if 

·x = f(x) x ∈ ℝn, x(0) ∈ K
K ⊂ ℝn

ξ(t, x) t x

∥ ⋅ ∥ T ≥ 0 ε > 0 T → ∞ ε ↘ 0
E (T, ε) ∀x ∈ K ∃x̄ ∈ E : max

t∈[0,T]
∥ξ(t, x) − ξ(t, x̄)∥ < ε

ε

x
x̄

t = 0 t = T



Entropy Definition

 


• : known initial set, compact with nonempty interior
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Entropy definition:
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• : minimal cardinality of a -spanning set
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Entropy Definition

 


• : known initial set, compact with nonempty interior


• : solution at time  with initial state 


Entropy definition:


• Pick norm , time horizon  and resolution  (eventually  and )


• A set  of initial states is -spanning if 


• : minimal cardinality of a -spanning set


• Topological entropy: exponential growth rate of 


 


Intuition:

‣  is a set of quantization points (with error )

‣  corresponds to the minimal number of bits needed to specify one quantization point

‣  corresponds to the minimal bit rate for quantization

·x = f(x) x ∈ ℝn, x(0) ∈ K
K ⊂ ℝn

ξ(t, x) t x

∥ ⋅ ∥ T ≥ 0 ε > 0 T → ∞ ε ↘ 0
E (T, ε) ∀x ∈ K ∃x̄ ∈ E : max

t∈[0,T]
∥ξ(t, x) − ξ(t, x̄)∥ < ε

S(ε, T, K) (T, ε)
S(ε, T, K)

h = lim
ε↘0

lim sup
T→∞

1
T log S(ε, T, K)

E < ε
log S(ε, T, K)
h

-  
- Entropy bounds on the slides actually 

mean the maximum of them and zero

h ≥ 0

- Minimal # of trajectories needed to approximate all 
trajectories from  with error  over  

- Increasing in , decreasing in 
K < ε [0,T ]

T ε



Entropy of Linear Time-Invariant Systems

Topological entropy


 


Linear time-invariant (LTI) system :


Topological entropy Minimal data rate for stabilization


‣ Entropy formula: [Bowen’71; Colonius-Kawan’09]

‣ Minimal data rate for stabilization: [Hespanha-Ortega-Vasudevan’02; Nair-Evans’03; Tatikonda-Mitter’04]

h = lim
ε↘0

lim sup
T→∞

1
T log S(ε, T, K)

·x = Ax

h = ∑
λ∈spec(A)

max{Re(λ), 0} =



Switched Systems

 


• Modes ; : piecewise constant switching signal


• Solution: 


Bound for distance between solutions:


• Matrix measure: 


• For LTV system , it is well-known that 

• Proposition 2.5. 


        with 


Sketch of proof: Variational method

‣ Write distance as an integral of Jacobian  over the line segment


‣ Write  as the state of an LTV, apply the above bound


Similar lower bound for volume of reachable set 

·x = fσ(x) x ∈ ℝn, x(0) ∈ K
{f1(x), …, fP(x)} σ : ℝ≥0 → {1,…, P}

ξσ(t, x) = ⋯ξp2
(t2 − t1, ξp1

(t1, x))⋯

μ(A) := lim
t↘0

∥I + tA∥− 1
t

·x = A(t) x ∥x(t)∥ ≤ e ∫t
t0

μ(A(s)) ds∥x(0)∥

∥ξσ(t, x) − ξσ(t, x̄)∥ ≤ eη̄(t)∥x̄ − x∥ η̄(t) := max
v∈co(K)

∫ t
0

μ(Jx fσ(s)(ξσ(s, v))) ds

Jxξσ(t, v)
Jxξσ(t, x)

ξσ(t, K)

- Right-hand derivative of  at  
- ; can have 

∥eAt∥ t = 0
Re(λ) ≤ μ(A) ≤ ∥A∥ μ(A) < 0

- Integral of the measure of Jacobian along trajectory

- Integral of the measure of system matrix



Entropy of Switched Systems

 


• Topological entropy  is defined for a fixed switching signal , similarly as before


Useful quantities about switching:


• Active time of mode :  with  if  and  if not


• Active rate ; asymptotic active rate 


Entropy of switched linear system  [Y-Schmidt-Liberzon-Hespanha’20; Y-H-L’19]:


• General upper/lower bound:




• An exact formula for commuting matrices (i.e., )


• Connections with stability: e.g.,

 for some stable switched system

·x = fσ(x) x ∈ ℝn, x(0) ∈ K
h σ

p τp(t) = ∫ t
0

1p(σ(s)) ds 1p(σ(s)) = 1 σ(s) = p 0

ρp(t) = τp(t)/t ̂ρp = lim sup
t→∞

ρp(t)

·x = Aσx

lim sup
t→∞

∑p tr(Ap)ρp(t) ≤ h ≤ lim sup
t→∞

∑p nμ(Ap)ρp(t)

ApAq = AqAp

h(Aσ + δI) = 0 δ > 0 ⟹

- ; can have ∑p ρp(t) ≡ 1 ∑p ̂ρp > 1

- Asymptotic average of the measure/trace of 
system matrices, weighted by active rates ρp(t)



Theorem 3.1. General upper bound:


        with 


Feature:


‣ Asymptotic average of , weighted by active rates 


‣ : supremum of the measure of Jacobian matrix over the -limit set


Sketch of proof:

‣ Lemma 2.3. Constructing standard spanning sets to show:


If , then 


‣ Proposition 2.5. Bound for distance between solutions:

    with 


‣ Lemma 2.4. Separating coefficients of system dynamics and switching:

For integrable functions ,


h ≤ lim sup
t→∞

∑p n ̂μpρp(t) ̂μp = lim sup
s→∞

max
v∈co(K)

μ(Jx fp(ξσ(s, v)))

n ̂μp ρp(t)
̂μp ω

∥ξσ(t, x) − ξσ(t, x̄)∥ ≤ eη̄(t)∥x̄ − x∥ h ≤ lim
ε↘0

lim sup
T→∞

1
T max

t∈[0,T]
nη̄(t)

∥ξσ(t, x) − ξσ(t, x̄)∥ ≤ eη̄(t)∥x̄ − x∥ η̄(t) := max
v∈co(K)

∫ t
0

μ(Jx fσ(s)(ξσ(s, v))) ds

{a1(s), …, aP(s)}
lim sup

T→∞

1
T max

t∈[0,T]
∫ t

0
aσ(s)(s) ds ≤ lim sup

t→∞
∑p (lim sup

s→∞
ap(s))ρp(t)

Entropy of Switched Nonlinear Systems 

- So that  only depending on -limit set̂μp ω

Lemma 2.3

Entropy bound 
in terms of exponential 

growth of distance  
between solutions

Prop. 2.5

Entropy bound in terms 
of average of measure of 
Jacobian along trajectory

Lemma 2.4

Theorem 3.1



Theorem 3.1. General upper bound:


        with 


Theorem 3.1. General lower bound:


        with 


Feature:


‣ Asymptotic average of  weighted by active rates


‣ : infimum of the trace of Jacobian over the -limit set


Proof: bound for volume of reachable set 

h ≤ lim sup
t→∞

∑p n ̂μpρp(t) ̂μp = lim sup
s→∞

max
v∈co(K)

μ(Jx fp(ξσ(s, v)))

h ≥ lim sup
t→∞

∑p χ̌pρp(t) χ̌p = lim inf
s→∞

min
v∈K

tr(Jx fp(ξσ(s, v)))

χ̌p

χ̌p ω

ξσ(t, K)

Entropy of Switched Nonlinear Systems 



Theorem 3.1. General upper bound:


        with 


Theorem 3.1. General lower bound:


        with 


Corollary 3.2. More conservative upper bounds that require less information about switching:


,        


Theorem 4.1, Corollary 4.2. Tighter bounds for entropy of switched diagonal systems 

h ≤ lim sup
t→∞

∑p n ̂μpρp(t) ̂μp = lim sup
s→∞

max
v∈co(K)

μ(Jx fp(ξσ(s, v)))

h ≥ lim sup
t→∞

∑p χ̌pρp(t) χ̌p = lim inf
s→∞

min
v∈K

tr(Jx fp(ξσ(s, v)))

h ≤ ∑p n ̂μp ̂ρp h ≤ maxp n ̂μp

·xi = f i
σ(xi)

Entropy of Switched Nonlinear Systems 

- Depending on asymptotic active 
rates  instead of active rates ̂ρp ρp(t)

- Does not involve active rates at all



Numerical Example

Switched Lotka—Volterra ecosystem


 


• : population density of the -th species


• : intrinsic growth rate of the -th population


• : self-interaction term due to limited resource


• : influence of the -th population on the -th one


• Switching may be due to seasonal changes or other environmental factors

·xi = fσ(x) = (ri
σ + ∑j aij

σ xj) xi, x ∈ ℝn
≥0

xi i
ri
p i

aii
p < 0

aij
p j i



Numerical Example

Switched Lotka—Volterra ecosystem with two species
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Convergence of switched system [Aleksandrov-Chen-Platonov-Zhang’11]:


• -limit set  (gray rectangle)ω ⊂ Ω := [0,3.04] × [0,2.03] -  is not positively invariantΩ

Mode 1:    
·x1 = (−1 − x1 + 0.1x2) x1
·x2 = (2 + 0.1x1 − x2) x2

Mode 2:    
·x1 = (3 − x1 + 0.1x2) x1
·x2 = (−1 + 0.1x1 − x2) x2
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Numerical Example

Switched Lotka—Volterra ecosystem with two species

: switching periodically 
switches:  
asymptotic active rates: 

σ1
{1000, 2000, …, 1000k, …}

̂ρ1 = ̂ρ2 = 0.5

: switching when  reaches  
switches:  
asymptotic active rates: 

σ2 ρτ(t)(t) 0.9
{1, 10, 90, …, 10 × 9k−2, …}

̂ρ1 = ̂ρ2 = 0.9

Switching signals:

- Switching prevents extinction 
- Entropy describes data-rate requirements for monitoring

Th. 3.1 Cor. 3.2 

- Th. 3.1: 


- Cor. 3.2: (1) ; (2) 


- (  computed over )

lim sup
t→∞

∑p n ̂μpρp(t)

∑p n ̂μp ̂ρp maxp n ̂μp

̂μp Ω

Mode 1:    
·x1 = (−1 − x1 + 0.1x2) x1
·x2 = (2 + 0.1x1 − x2) x2

Mode 2:    
·x1 = (3 − x1 + 0.1x2) x1
·x2 = (−1 + 0.1x1 − x2) x2



Conclusion

Summary:

• General upper/lower bounds for topological entropy of switched nonlinear systems

• More conservative upper bounds that require less information about switching

• Tighter bounds for switched diagonal systems


• Feature: most bounds only depend on Jacobian over -limit set

• Numerical example of a switched Lotka—Volterra ecosystem


Future research:

• Topological entropy of nonlinear time-varying systems

• Topological entropy of switched commuting systems

• Connections between topological entropy and stability

ω



Thank you!


