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Abstract— The input-to-state stability (ISS) of a nonlinear
switched system is investigated in the scenario where there
may exist some subsystems that are not input-to-state stable
(non-ISS). We show that, providing the switching signal neither
switches too frequently nor activates non-ISS subsystems for too
long, a hybrid ISS Lyapunov function can be constructed to
guarantee ISS of the switched system. With the constraints on
the switching signal being modeled by a novel auxiliary timer, a
hybrid system is defined so that the solutions to the two systems
are correspondent. After the construction and verification of
an ISS Lyapunov function, ISS of all complete solutions to
the hybrid system, and therefore all solutions to the switched
system, is conveniently proved.

I. INTRODUCTION

In this paper, we explore the stability property of nonlinear
switched systems using hybrid system techniques. The study
of switched systems has attracted a lot of attention in recent
years (see, e.g., [1] and references therein). It is well-known
that, a switched system does not necessarily inherit the
stability properties of its subsystems. For example, in [1,
Part II] it was shown that a switched system consisting of
two asymptotically stable subsystems may not be stable. For
linear systems, it was proved in [2] that such a switched sys-
tem can achieve asymptotic stability providing the switching
signal satisfies a certain dwell-time condition. This approach
was then generalized to the nonlinear system context and to
the concept of average dwell-time condition in [3]. In [4],
a similar result was developed for a linear switched system
with both stable and unstable subsystems by restricting the
fraction of time in which the unstable subsystems are active.

When disturbances or controls are present, the notion of
input-to-state stability (ISS) proposed by Sontag [5] has
proved to be valuable in the stability analysis of nonlinear
systems. In this context, an important result is that ISS is
equivalent to the existence of an ISS Lyapunov function
[6]. The dual concept of ISS, output-to-state stability (OSS),
and their combination, input/output-to state stability (IOSS),
were introduced in [7] and [8], respectively. The study of
stability property inheritance in nonlinear switched systems
was extended to the ISS context by Xie et al. [9] under dwell-
time conditions, Vu et al. [10] under average dwell-time con-
ditions, and to the IOSS context by Müller and Liberzon [11]
under average dwell-time conditions as well. Furthermore,
in [11] the IOSS property of a switched nonlinear system
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was studied also for the general case where some of the
subsystems are not input/output-to-state stable.

In this work, we consider the same general scenario
as in [11]: in the switched system there may exist some
subsystems that are not input-to-state stable (non-ISS). It is
proved that, providing the switching signals neither switch
too frequently (average dwell-time constraint) nor activate
non-ISS subsystems for too long (time-ratio constraint), an
ISS Lyapunov function can be constructed by introducing an
auxiliary timer and adopting hybrid system techniques. In
particular, a hybrid system is defined such that the solutions
to the two systems are correspondent and the constraints
on the switching signal are modeled by the auxiliary timer.
For the hybrid system, an ISS Lyapunov function is then
constructed to establish the ISS property for all complete
solutions to the hybrid system, and therefore all solutions
to the switched system. Although the result that a switched
system with not necessarily ISS subsystems is ISS under
certain average dwell-time condition and time-ratio condi-
tion has already been proved in [11], the Lyapunov-based
formulation in this paper exhibits improvements: it not only
generates an ISS Lyapunov function which can be used later
in the study of interconnected systems [12], but provides
means for robustness analysis as well. Also, our construction
of the novel hybrid timer is of interest in its own right.

Hybrid systems are dynamic systems that possess both
continuous-time and discrete-time features. In our analysis of
hybrid systems, we adopt the modeling framework proposed
by Goebel et al. [13], which proved to be general and
natural from the viewpoint of Lyapunov stability theory. The
concepts of ISS and ISS Lyapunov function were extended
to hybrid systems in [14]. In the hybrid system context, a
detailed study of constructing ISS Lyapunov functions under
undesired flow or jump behaviors can be found in [15, Sec-
tion IV]. Comparing to [15], our result on modifying the ISS
Lyapunov function to guarantee its decrease along solutions
is more general in the sense that it applies to the situation
where the original ISS Lyapunov functions are increasing
both at the jumps and during some of the flows. Based on
the idea of restricting non-ISS subsystems’ total activation
time proportion proposed in [4] and [11], an aforementioned
auxiliary timer is introduced in the construction of the hybrid
system to manage the non-ISS flows.

This paper is structured as follows: In Section II, we
introduce some preliminaries. Our main result—the sufficient
condition that guarantees ISS of a nonlinear switched system
with both ISS and non-ISS subsystems—is presented and
clarified in Section III. A detailed proof, prefaced by an



introduction to hybrid systems, is provided in Section IV.
In Section V, our approach is demonstrated in a simulation
example. Section VI concludes the paper.

II. PRELIMINARIES

Consider a family of dynamic systems

ẋ = fp(x, u), p 2 P (1)

where x 2 Rn is the state, u 2 Rm is the input and P is
the index set (which can in principle be arbitrary). For all
p 2 P , fp is locally Lipschitz and fp(0, 0) = 0. Given the
family (1), a switched system

ẋ = f�(x, u) (2)

is generated by a switching signal � : R�0

! P which
specifies the index of the active system at time t. The
switching signal � is assumed to be piecewise constant and
right-continuous. Let  k (k 2 Z>0

) denote the time when
the k-th switch occurs and define  := { k : k 2 Z>0

}
as the set of switching time instants, which is assumed to
contain no accumulation points. (Thus the switched system
(2) has at most one switch at any time instant and finitely
many switches in any finite time interval.) A function u is an
admissible input to the switched system (2) if it is measurable
and locally essentially bounded.

Following Morse [2], we say that a switching signal �
satisfies the dwell-time condition if there exists a ⌧d 2 R>0

,
called the dwell-time, such that for all consecutive switching
time instants  k, k+1

2  ,

 k+1

�  k � ⌧d. (3)

A generalization of this concept was introduced by Hespanha
and Morse [3]: a switching signal � is said to satisfy the
average dwell-time condition if there exists a ⌧a 2 R>0

,
called the average dwell-time, and N
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such that
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where N(t
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) denotes the number of switches in the
time interval (t
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]. Note that the dwell-time condition can
be interpreted as a special case of the average dwell-time
condition with N
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= 1 and ⌧a = ⌧d.
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For a vector x 2 Rn, we use |x| to denote its Euclidean
norm. For a compact set A ⇢ Rn, we use |x|A to denote
the Euclidean distance from a vector x to A. For a function
u : R�0

! Rn, kukt is used to denote its essential supremum
(Euclidean) norm on the interval [0, t].

A function ↵ : R�0

! R�0

is of class K if it is continu-
ous, strictly increasing and positive definite. It is of class K1
if ↵ 2 K and limr!1 ↵(r) = 1. In particular, this implies
that ↵ is globally invertible. A function � : R�0

⇥ R�0

!
R�0

is of class KL if �(·, t) 2 K for all fixed t, �(r, ·) is
decreasing and limt!1 �(r, t) = 0 for all fixed r.

As introduced by Sontag [5], a dynamic system from
family (1) is called input-to-state stable (ISS) if there exist

functions � 2 K1,� 2 KL such that for all initial states
x(0) 2 Rn and all inputs u : R�0

! Rm,

|x(t)|  �(|x(0)|, t) + �(kukt) 8 t 2 R�0

. (5)

The definition of input-to-state stability (ISS) also applies
to switched systems. Note that for an autonomous dynamic
system (i.e. u ⌘ 0), inequality (5) is equivalent to the notion
of global asymptotic stability (GAS) [16, Proposition 2.5].

III. MAIN RESULT

Consider the switched system (2) with x 2 Rn, u 2
Rm, and � 2 P , which may contain both ISS and non-
ISS subsystems. Let Ps and Pu denote the subsets of
P containing the indices of ISS and non-ISS subsystems,
respectively. Then (Ps,Pu) forms a partition of P (i.e.,
Ps [ Pu = P and Ps \ Pu = ?). Following Müller and
Liberzon [11], we define Ts(t2, t1) as the total activation time
of ISS subsystems (i.e., subsystems from Ps) on the time
interval (t

1

, t

2

] and Tu(t2, t1) that for non-ISS subsystems.
Then Ts(t2, t1) + Tu(t2, t1) = t

2

� t

1

.
We introduce three constraints in the following assump-

tion; the first two are frequently used in the context of
switched systems, while the last one (Time-Ratio Constraint)
is somewhat less standard. The idea of restricting the fraction
of time during which non-ISS subsystems are active in the
third constraint is essentially introduced in [4] and [11].

Assumption 1 The following three constraints are satisfied:
UNIFORM ISS LYAPUNOV-TYPE CONSTRAINT There
exists a family of positive definite C1 functions Vp : Rn !
R�0

, p 2 P such that the following conditions hold:
1. 9 ↵

1

,↵

2

2 K1 such that for all x 2 Rn and all p 2 P ,

↵

1

(|x|)  Vp(x)  ↵

2

(|x|). (6)

2. 9 � 2 K1,�s,�u 2 R>0

such that for all x 2 Rn, all
u 2 Rm and all ps 2 Ps, pu 2 Pu,

|x| � �(|u|) )8
><

>:

@Vps(x)

@x

· fps(x, u)  ��sVps(x),

@Vpu(x)

@x

· fpu(x, u)  �uVpu(x).

(7)

3. 9 µ 2 R�1

such that for all x 2 Rn and all p, q 2 P ,

Vp(x)  µVq(x). (8)

AVERAGE DWELL-TIME CONSTRAINT The switching
signal � satisfies the average dwell-time condition (4) with
constants ⌧a 2 R>0

and N

0

2 Z�0

.
TIME-RATIO CONSTRAINT There exists ⇢ 2 [0, 1) and
T

0

2 R�0

such that the total activation time of non-ISS
subsystems satisfies

Tu(t2, t1)  T

0

+ ⇢(t

2

� t

1

) 8 t

2

� t

1

� 0. (9)

In Assumption 1, the Uniform ISS Lyapunov-Type Con-
straint is a constraint on the subsystems’ dynamics, while
the Time-Ratio Constraint and the Average Dwell-Time
Constraint are constraints on the switching signal.



Remark 1 The Uniform ISS Lyapunov-Type Constraint in
Assumption 1 is “Lyapunov-type” in the sense that it con-
strains not only the ISS subsystems, but the non-ISS sub-
systems as well. The existence of functions Vps satisfying
(7) for ps 2 Ps follows from the fact that these subsystems
are ISS [17], while the existence of functions Vpu satisfying
(7) for pu 2 Pu is equivalent to the forward completeness
property of non-ISS subsystems [18].

Remark 2 The Uniform ISS Lyapunov-Type Constraint in
Assumption 1 is “uniform” since it is satisfied by ISS Lya-
punov functions Vp for all subsystems, with fixed class K1
functions ↵

1

,↵

2

,� and constants �s,�u, µ. This uniformity
can be concluded automatically for some particular types
of index sets. For example, (6) is guaranteed if P is finite
and all subsystems are ISS [10, Remark 1]. Besides, for
positive definite functions Vp, the existence of the uniform
ratio bound µ in (8) is a sufficient condition for the existence
of the uniform comparison functions ↵

1

,↵

2

in (6).

One of our main contributions is to give a Lyapunov-based
proof of the following theorem, established earlier in [11]
using trajectory-based arguments:

Theorem 1 ([11, Theorem 2]) Consider the switched sys-
tem (2). Suppose that Assumption 1 holds with

�s >
ln(µ)

⌧a
+ ⇢(�s + �u) =: �. (10)

Then the switched system is input-to-state stable.

Remark 3 Note that equation (10) can be rewritten as

(1� ⇢)�s � ⇢�u � ln(µ)

⌧a
> 0,

which helps provide a clearer interpretation of this condition.
Here (1 � ⇢)�s measures the average rate of exponential
decay of the ISS Lyapunov functions due to the ISS sub-
systems, while ⇢�u and ln(µ)/⌧a measure their exponential
growth due to the non-ISS subsystems and the switches,
respectively. Thus this condition can be interpreted as saying
that the ISS Lyapunov functions are decreasing on average.

IV. PROOF OF THE MAIN RESULT

A detailed proof of Theorem 1 is presented in this section.
We start by introducing some preliminaries for hybrid sys-
tems in Subsection IV-A. In Subsection IV-B, a correspon-
dent hybrid system is constructed for the switched system
(2) under Assumption 1. An ISS Lyapunov function for the
hybrid system is defined and verified in Subsection IV-C.
Subsection IV-D concludes the proof by establishing the ISS
property for all complete solutions to the hybrid system, and
therefore all solutions to the switched system (2).

A. Preliminaries for Hybrid Systems
Following Goebel et al. [13, Chapter 2], a hybrid system

with inputs can be modeled as
⇢
ż 2 F (z, u), z 2 C,

z

+ 2 G(z, u), z 2 D,

(11)

where z 2 Rn is the state, u 2 Rm is the input, C ⇢ Rn is
the flow set, D ⇢ Rn is the jump set, F : Rn⇥Rm ◆ Rn is
the flow map and G : Rn ⇥Rm ◆ Rn is the jump map.1 (In
this model, if z 2 C, then the state can flow at a velocity
ż 2 F (z, u); if z 2 D, then the state can jump to a point
z

+ 2 G(z, u); if z 2 C \D, then there are two possibilities:
the state can either flow or jump.) H = (C,F,D,G) is called
the data of the hybrid system. The solutions to the hybrid
system are defined on the so-called hybrid time domain. A
set E ⇢ R�0

⇥ Z�0

is a compact hybrid time domain if

E =

K[

k=0

([✓k, ✓k+1

], k) (12)

for some finite sequence of times 0 = ✓

0

 ✓

1

 · · · 
✓K+1

. E is a hybrid time domain if for all (T,K) 2 E,
E\([0, T ]⇥{0, 1, . . . ,K}) is a compact hybrid time domain.
A hybrid arc is a function z : dom z ! Rn defined on a
hybrid time domain such that for each fixed k 2 Z�0

, z(·, k)
is locally absolutely continuous on {t : (t, k) 2 dom z} =:

⇥

z
k. A hybrid arc is complete if its domain is unbounded.

A hybrid input is a function u : domu ! Rm defined on a
hybrid time domain such that for each fixed k 2 Z�0

, u(·, k)
is Lebesgue measurable and locally essentially bounded on
{t : (t, k) 2 domu} = ⇥

u
k . A hybrid arc z : dom z ! Rn is

a solution to a hybrid system H = (C,F,D,G) with hybrid
input u : domu ! Rm if the following conditions hold:
1. dom z = domu.
2. z(t, k) 2 C and ż(t, k) 2 F (z(t, k), u(t, k)) for all k 2

Z�0

and almost all t 2 ⇥z
k.2

3. z(t, k) 2 D and z(t, k + 1) 2 G(z(t, k), u(t, k)) for all
(t, k) 2 dom z such that (t, k + 1) 2 dom z.

With proper assumptions on the data H, one can establish
the local existence of solutions to the hybrid system, which
may not be necessarily unique; cf. [13, Proposition 2.10].

Following Cai and Teel [14], for a function defined on a
hybrid time domain z : dom z ! Rn, the essential supre-
mum (Euclidean) norm up to hybrid time (t, k) is denoted
by kzk

(t,k) and defined as

kzk
(t,k) :=

max

8
><

>:
ess sup

(s,l)2dom z\J(z)
st,lk

|z(s, l)|, sup

(s,l)2J(z),
st,lk

|z(s, l)|

9
>=

>;
,

where J(z) is the set of all (s, l) 2 dom z such that
(s, l + 1) 2 dom z. (Note that the set of measure 0 that can
be ignored when computing this essential supremum norm
cannot include any jump time instants.)

1We use ”◆” to denote a set-valued mapping.
2Here z(t, k) represents the state of the system at time t and after k

jumps.



B. A Correspondent Hybrid System
In this subsection, we construct a hybrid system whose

state consists of variables representing the state of the
switched system, the switching signal and an auxiliary timer
⌧ . The dynamics of the timer is specifically designed to
not only incorporate the effect of the Average Dwell-Time
Constraint and Time-Ratio Constraint in Assumption 1, but
also enable us to construct an ISS Lyapunov function for the
hybrid system in Subsection IV-C.

Consider the hybrid system with state z = (ex, e�, ⌧) 2
Rn ⇥P ⇥ [0,�] =: Z and input eu 2 Rm defined as follows:

⇢
ż 2 F (z, eu), z 2 C,

z

+ 2 G(z), z 2 D,

(13)

where

F (z, eu) :=

8
>>>>>><

>>>>>>:

2

4
{fe�(ex, eu)}

{0}
[0, �]

3

5
, if e� 2 Ps,

2

4
{fe�(ex, eu)}

{0}
{� � (�s + �u)}

3

5
, if e� 2 Pu,

C := Rn ⇥ P ⇥ [0,�],

G(z) := {ex}⇥ (P\{e�})⇥ {⌧ � ln(µ)},
D := Rn ⇥ P ⇥ [ln(µ),�]

(14)

with
� := N

0

ln(µ) + T

0

(�s + �u) (15)

and the constant � is defined in (10). We will show that the
following proposition holds:

Proposition 1 Consider a solution x to the switched system
(2) with an input u and a switching signal �. Suppose
that Assumption 1 is satisfied. Then there exists a complete
solution z = (ex, e�, ⌧) to the hybrid system (13) with a hybrid
input eu such that

⇢
eu(t, k) = u(t)

ex(t, k) = x(t)

8 (t, k) 2 dom z.

3 (16)

Proof: Suppose x is a solution to the switched system
(2) with input u and switching signal �. We construct a
hybrid arc z and a hybrid input ũ in a recursive manner.
Define  := { k : k 2 Z>0

} as the set of the switching
time instants of � and let  

0

= 0. For all T 2 R�0

, define
the number of switches on [0, T ] as KT := max{k 2 Z�0

:

 k  T} and let

ET :=

 
KT�1[

k=0

([ k, k+1

], k)

!
[ ([ KT , T ],KT ). (17)

Then ET is a compact hybrid time domain. Consider the
hybrid input eu and the hybrid arc z = (ex, e�, ⌧) defined so
that for all T 2 R�0

, the following conditions hold:
• dom z\([0, T ]⇥{0, 1, . . . ,KT }) = ET , dom eu = dom z;

3From the proof of Proposition 1, it will be clear that there exists a
complete solution z such that in addition to (16), we also have e�(t, k) =

�(t) for all (t, k) 2 dom z. But only (16) is required in the proof.

• For all (t, k) 2 ET , eu(t, k) = u(t), ex(t, k) = x(t) and
e�(t, k) = �( k);

• For all (t, k) 2 ET ,

⌧(t, k) =

8
<

:

�, if k = 0,

min{�, ⌧̄s(t, k)}, if k > 0,�( k) 2 Ps,

⌧̄u(t, k), if k > 0,�( k) 2 Pu,

(18)
where

⌧̄s(t, k) := ⌧( k, k � 1)� ln(µ) + �(t�  k),

⌧̄u(t, k) := ⌧̄s(t, k)� (�s + �u)(t�  k).
(19)

We will show that, if Assumption 1 is satisfied, the hybrid
arc z is a complete solution to the hybrid system (13) with
hybrid input eu.

Indeed, by construction, z and eu are defined on the same
hybrid time domain and satisfy the dynamics of the hybrid
system (13). Then it remains to prove that z is complete and
for all (t, k) 2 dom z, z(t, k) 2 C [D = Z , which amount
to showing the following three properties:
1. By the Uniform ISS Lyapunov-Type Constraint in As-

sumption 1, the solution x to the switched system (2) is
forward complete and is thus defined for all t 2 R�0

.
Therefore dom z is unbounded in the t-direction and
ex(t, k) 2 Rn for all (t, k) 2 dom z.

2. Since � : R�0

! P , e�(t, k) 2 P for all (t, k) 2 dom z.
3. From (18) and (19), it is clear that ⌧(t, k)  � for all

(t, k) 2 dom z. On the other hand, for any (t, k) 2 dom z,
let (t

0

, k

0

) := argmax

(s,l)2dom z{s+l  t+k : ⌧(s, l) =

�}. (Such (t

0

, k

0

) always exists since ⌧(0, 0) = �.)
Then according to the Time-Ratio Constraint and the
Average Dwell-Time Constraint in Assumption 1 and the
definitions of � in (10) and � in (15), we have

⌧(t, k) = ⌧(t

0

, k

0

)�N(t, t

0

) ln(µ)

+ Ts(t, t0)� + Tu(t, t0)(� � (�s + �u))

� �� (N

0

+ (t� t

0

)/⌧a) ln(µ)

+ (t� t

0

)� � (T

0

+ ⇢(t� t

0

))(�s + �u)

= 0.

Thus ⌧(t, k) � 0 for all (t, k) 2 dom z.4,5

C. A Hybrid ISS Lyapunov Function
Let a function V : Z ! R�0

be defined as

V (z) := Ve�(ex) exp(⌧), (20)

where functions Vp, p 2 P are the ISS Lyapunov functions in
the Uniform ISS Lyapunov-Type Constraint in Assumption 1.

4This property is equivalent to the fact that ⌧ � ln(µ) whenever a jump
occurs, since otherwise ⌧

+
< 0.

5By Goebel et al. [13, Proposition 2.10], for a hybrid system with local
existence of solutions, a solution is complete if it has no finite escape time
and does not jump out of the union of the jump set and the closure of
the flow set. Unfortunately, we cannot apply this result since in the hybrid
system (13), the local existence of solutions is not satisfied everywhere.
In particular, at z = (ex, e�, 0) where e� 2 Pu, the condition (VC) in [13,
Proposition 2.10] does not hold. However, the hybrid arcs we constructed
will not arrive at such points.



For all z = (ex, e�, ⌧) 2 Z , since Ve�(ex) is C1 with respect to
ex, V (z) is continuously differentiable with respect to ex and
⌧ . We will show that the following uniform ISS Lyapunov
conditions are satisfied:

Proposition 2 V satisfies the following conditions:
1. 9 ↵,↵ 2 K1 such that for all z 2 Z ,

↵(|z|A)  V (z)  ↵(|z|A), (21)

where
A := 0

n ⇥ P ⇥ [0,�]. (22)

2. 9 � 2 R>0

such that for all z 2 C, all eu 2 Rm and all
v 2 F (z, eu),

|z|A � �(|eu|) ) @V (z)

@z

· v  ��V (z). (23)

3. For all z 2 D and all z+ 2 G(z),

V (z

+

)  V (z). (24)

Proof: Based on the Uniform ISS Lyapunov-Type
Constraint in Assumption 1, we have
1. Let ↵(r) := ↵

1

(r), ↵(r) := ↵

2

(r) exp(�), then (21) is
satisfied according to (6).

2. Let � := �s � �, then � > 0 by (10). For all z 2 C, all
eu 2 Rm and all v 2 F (z, eu), since V (z) is continuously
differentiable with respect to ex and ⌧ , and ˙e� = 0, the
inner product in (23) is well-defined. According to (7),
|z|A � �(|eu|) implies the following:
i. If e� 2 Ps,
@V (z)

@z

· v  @V (ex, e�, ⌧)
@ex · fe�(ex, eu) + @V (ex, e�, ⌧)

@⌧

· �
 ��sVe�(ex) exp(⌧) + Ve�(ex) exp(⌧)�
= ��V (z).

ii. If e� 2 Pu,
@V (z)

@z

· v =

@V (ex, e�, ⌧)
@ex · fe�(ex, eu)

+

@V (ex, e�, ⌧)
@⌧

· (� � (�s + �u))

 (�u + � � (�s + �u))Ve�(ex) exp(⌧)
= ��V (z).

3. For all z 2 D and all z+ 2 G(z), according to (8),

V (z

+

) = Ve�+
(ex+

) exp(⌧

+

)

 µVe�(ex) exp(⌧ � ln(µ)) = V (z).

Remark 4 From the proof of Proposition 2, we see that
the auxiliary timer ⌧ is designed so that it compensates
the increases in the concatenation of the ISS Lyapunov-type
function of the active subsystem, V�(x). Similar techniques
can be found in [1] for switched systems, [19] for impulsive
systems and [15] for hybrid systems. Our timer is more
general in the sense that it is able to handle the undesired

increases of V�(x) both at the switches and when a non-ISS
subsystem is active. In the latter case, our construction pro-
vides more decay in the auxiliary timer ⌧i for compensation,
as we can see in the definition of the flow map Fi (14).

D. ISS of the Switched System
In this subsection, we will show that the hybrid ISS

Lyapunov function V defined in (20) can be conveniently
used to prove the ISS property of the switched system.

Let ↵ 2 K1,� 2 KL be defined as
⇢
↵(r) := ↵

�1

(↵(�(r))),

�(r, t) := ↵

�1

(↵(r) exp(��t)),
then we have the following proposition:

Proposition 3 Suppose z is a complete solution to the
hybrid system (13) with hybrid input eu. Then,

|z(t, k)|A  �(|z(0, 0)|A, t) + ↵(keuk
(t,k)), (25)

for all (t, k) 2 dom z, where the set A is defined in (22).

Proof: Let z be a complete solution to the hybrid
system (13) with a hybrid input eu. According to (23) and
(24), for all (t, k), (t

0

, k

0

) 2 dom z such that t+k � t

0

+k

0

,
if |z(s, l)|A � �(keuk

(s,l)) for all (s, l) 2 dom z \ ([t

0

, t] ⇥
{k

0

, k

0

+ 1, . . . , k}), then

V (z(t, k))  V (z(t

0

, k

0

)) exp(��(t� t

0

)). (26)

From here, our proof follows similar arguments to the proof
of [14, Proposition 2.7]. Consider the following cases:
1. |z(t, k)|A  �(keuk

(t,k)). According to (21),

|z(t, k)|A  �(keuk
(t,k))

 ↵

�1

(↵(�(keuk
(t,k))))

 �(|z(0, 0)|A, t) + ↵(keuk
(t,k)).

2. For all (s, l) 2 dom z\([0, t]⇥{0, 1, . . . , k}), |z(s, l)|A >

�(keuk
(s,l)). By (26), V (z(t, k))  V (z(0, 0)) exp(��t).

According to (21),

|z(t, k)|A  ↵

�1

(↵(|z(0, 0)|A) exp(��t))
 �(|z(0, 0)|A, t) + ↵(keuk

(t,k)).

3. |z(t
0

, k

0

)|A = �(keuk
(t0,k0)

) for some (t

0

, k

0

) 2 dom z \
([0, t]⇥{0, 1, . . . , k}) and for all (s, l) 2 dom z\([t

0

, t]⇥
{k

0

, k

0

+ 1, . . . , k})\(t
0

, k

0

), |z(s, l)|A > �(keuk
(s,l)).

By (26), V (z(t, k))  V (z(t

0

, k

0

)) exp(��(t � t

0

)).
According to (21),

|z(t, k)|A  ↵

�1

(↵(|z(t
0

, k

0

)|A))
= ↵(keuk

(t0,k0)
)

 �(|z(0, 0)|A, t) + ↵(keuk
(t,k)).

Combining Propositions 1 and Proposition 3 gives that,
for each solution x to the switched system (2) with an input
u and a switching signal �, if Assumption 1 holds, then

|x(t)|  �(|x(0)|, t) + ↵(kukt) 8 t 2 R�0

, (27)

that is, the switched system (2) is input-to-state stable. This
completes the proof of Theorem 1.

Guosong Yang
As the hybrid input is not necessarily continuous, it should be |z(t_0, k_0)|_A < phi(||u||_(t_0, k_0)) 



(a) (b)

Fig. 1: Simulation example. (a) Switching signal � and auxiliary timer ⌧ ;
(b) Concatenation of ISS Lyapunov-type functions V�(x) and hybrid ISS
Lyapunov function V (z).

V. SIMULATION EXAMPLE

In this subsection, we demonstrate our approach by a
simulation example. Consider the following system

ẋ

1

= x

2

,

ẋ

2

= �x

1

� x

2

+ u,

where x = (x

1

, x

2

) 2 R2 is the state and u 2 R is the
input (disturbance). Suppose that due to a fault, sometimes
the dynamics of x

2

will become

ẋ

2

= �x

2

+ u.

Then the system becomes a switched system with the index
set P = Ps [ Pu, where Ps = {0} and Pu = {�1}.6
Define V

0

(x) := x

2

1

+ x

1

x

2

+ x

2

2

and V�1

(x) := x

2

1

+ x

2

2

,
it is easy to verify that the Uniform ISS Lyapunov-Type
Constraint in Assumption 1 is satisfied with ↵

1

(x) := x

2,
↵

1

(x) := 3x

2

/2, �(x) := 4

p
5x, �s = 1/2, �u =

p
2 �

1 +

p
5/10 and µ = 2. In the simulation, we generated a

random switching signal satisfying the Average Dwell-Time
Constraint and Time-Ratio Constraint in Assumption 1 with
N

0

= 2, ⌧a = 2, T
0

= 0.5 and ⇢ = 1/8. Then condition
(10) in Theorem 1 is satisfied. To focus on demonstrating
the modification of the ISS Lyapunov functions, we used
a random input signal u with small amplitude so that the
condition |x| � �(|u|) in (7) is always satisfied.

The simulation result is shown in Fig. 1. In particular,
from Fig. 1(b), we see that if we concatenate the function Vi

(i 2 P) of the active subsystem directly, the result, V�(x),
will have “spikes” at switches and may be increasing if the
non-ISS subsystem is active (� = �1); on the other hand,
the hybrid ISS Lyapunov function V (z) is always decreasing
along the solution, which is consistent with Proposition 2.

Fig. 1(a) plots the switching signal � we used and the
behavior of the auxiliary timer ⌧ . We see that ⌧ decreases
when the non-ISS subsystem is active, jumps down by
a constant value ln(µ) (⇡ 0.693) when a switch occurs,
increases when the ISS subsystem is active and saturates
at � = N

0

ln(µ) + T

0

(�s + �u) (⇡ 1.955).

6The indices 0 and �1 are simply chosen to separate the plots of the
switching signal � and the timer ⌧ in Fig. 1(a).

VI. CONCLUSIONS

We have studied the ISS property of a nonlinear switched
system in a general scenario where there may exist some
subsystems that are not input-to-state stable. A sufficient
condition that guarantees the input-to-state stability of the
switched system has been established via hybrid system
techniques and the construction of an appropriate hybrid
ISS Lyapunov function. An auxiliary timer was designed
to handle the effect of undesirable switches and non-ISS
subsystems. An application of this approach can be found
in [12], where two such ISS Lyapunov functions are used to
establish stability of an interconnected switched system.
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[15] D. Liberzon, D. Nešić, and A. Teel, “Lyapunov-based small-gain the-
orems for hybrid systems,” IEEE Transactions on Automatic Control,
vol. 59, pp. 1395–1410, Jun. 2014.

[16] Y. Lin, E. Sontag, and Y. Wang, “A smooth converse lyapunov theorem
for robust stability,” SIAM Journal on Control and Optimization,
vol. 34, pp. 124–160, Jan. 1996.

[17] L. Praly and Y. Wang, “Stabilization in spite of matched unmodeled
dynamics and an equivalent definition of input-to-state stability,”
Mathematics of Control, Signals, and Systems, vol. 9, pp. 1–33, Mar.
1996.

[18] D. Angeli and E. Sontag, “Forward completeness, unboundedness ob-
servability, and their Lyapunov characterizations,” Systems & Control
Letters, vol. 38, pp. 209–217, Dec. 1999.

[19] J. Hespanha, D. Liberzon, and A. Teel, “Lyapunov conditions for
input-to-state stability of impulsive systems,” Automatica, vol. 44, pp.
2735–2744, Nov. 2008.


