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Abstract

Two general upper bounds on the topological entropy of nonlinear time-varying systems are estab-
lished: one using the matrix measure of the system Jacobian, the other using the largest real part of
the eigenvalues of the Jacobian matrix with off-diagonal entries replaced by their absolute values. A
general lower bound is constructed using the trace of the Jacobian matrix. For interconnected systems,
an upper bound is first derived by adapting one of the general upper bounds, using the matrix measure
of an interconnection matrix function. A new upper bound is then developed using the largest real part
of the eigenvalues of this function. This new bound is closely related to the individual upper bounds for
subsystems and implies each of the two general upper bounds when the system is viewed as one of two
suitable interconnections. These entropy bounds all depend only on upper or lower limits of the Jacobian
matrix along trajectories.

1 Introduction

In systems theory, topological entropy characterizes the rate at which information is generated in deterministic
systems, captured by the increase in distinguishable behaviors at finite resolution, or by the complexity growth
of a system acting on a set with finite measure. Adler et al. [1] introduced the concept of topological entropy
as an extension of Kolmogorov’s metric entropy [2], quantifying the exponential growth rate of the minimal
number of sets in iterated open-cover refinements. An alternative definition, formulated in terms of the
maximal number of separated trajectories over finite time horizons, was proposed by Dinaburg [3] and
independently by Bowen [4]. The equivalence between these two formulations was established in [5]. The
variational principle, which identifies topological entropy as the supremum of metric entropy over invariant
measures, was established through the combined works of Dinaburg [3,6], Goodman [7], and Goodwyn [8].
For a comprehensive introduction to topological entropy, see, e.g., [9, 10] and the references therein.

Most existing results on topological entropy focus on time-invariant systems, as time-varying dynamics
introduce additional complexities that require new analytical methods. Kolyada and Snoha [11] defined
topological entropy for discrete-time systems modeled by a sequence of selfmaps on a compact topological
space, and established basic properties which strengthen under assumptions such as equicontinuity or uniform
convergence. Their definition and results were extended to time-varying maps defined on a sequence of
compact metric spaces in [12]. A variational principle based on this extended definition of topological
entropy and a time-varying notion of metric entropy was established in [13]. In the continuous-time setting,
an upper bound on the topological entropy of a time-varying system on a compact invariant set was derived
via the direct Lyapunov method in [14].

Topological entropy notions play a fundamental role in control theory, where feedback depends on the
flow of information between sensors and actuators. Nair et al. [15] introduced topological feedback entropy
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for discrete-time systems, building on the cover-refinement framework of [1]. Their definition extends
classical topological entropy to quantify the exponential growth rate of control complexity required to ensure
set invariance and stabilization. For continuous-time systems, Colonius and Kawan [16] proposed invariance
entropy, which is more closely aligned with the trajectory-counting formulation of [3, 4]. The equivalence
between topological feedback entropy and invariance entropy was established in [17]. Suitable entropy
notions have also been developed for exponential stabilization [18], state estimation [19–21], and model
detection [21].

Topological entropy is closely linked to data-rate requirements for control. For continuous-time linear
time-invariant systems, the minimal data rate for feedback stabilization is given by the sum of the positive real
parts of the eigenvalues of the system matrix [22]; in the discrete-time case, it is the sum of their logarithms
[22–24]. This quantity coincides with the topological entropy of the open-loop system [4]. While this
connection has also been extensively studied for nonlinear time-invariant systems (e.g., [15, 16, 18, 25]), its
counterpart for time-varying dynamics remains largely unexplored, except in certain cases such as switched
systems, discussed below.

In systems and control, a common paradigm is to decompose a complex system into an interconnection
of simpler subsystems and derive system-level properties from those of the components. A classical example
is the small-gain theorem, used to establish stability of interconnected linear and nonlinear systems (e.g.,
[26, 27]). Entropy-based approaches have also been applied in this context, particularly for discrete-time
systems. The invariance entropy of a network of control systems was related to the entropy of its subsystems
and associated data rates in [28]. Observability rates for networked systems were linked to topological entropy
and auxiliary constructs such as storage functions and supply rates derived from subsystem linearization
in [29]. Invariance feedback entropy for a network of uncertain systems was investigated in [30]. In the
continuous-time setting, an upper bound on the topological entropy of interconnected systems was derived
in [31], which can be viewed as a prototype for some of the results in the present paper. However, much
remains to be understood about when and how explicit bounds on the topological entropy of an interconnected
nonlinear time-varying system can be deduced from those of its subsystems.

Topological entropy and data-rate requirements for control have been studied for switched systems, an
important class of time-varying systems. Sufficient data rates for feedback stabilization of switched linear
systems were established in [32, 33]. Similar data-rate conditions were derived in [34] by extending a
notion of estimation entropy from [21]. Formulae and bounds on the topological entropy of continuous-time
switched linear systems were derived in [35–37], with their relationship to stability conditions analyzed
in [37, 38]. In an extension to switched nonlinear and interconnected systems [39], bounds on entropy
were constructed using upper or lower limits of the matrix measure or the trace of the system Jacobian.
These quantities also appear in the bounds developed in the present paper. For discrete-time switched linear
systems, the topological entropy under worst-case switching sequences was studied using the joint spectral
radius in [40], and the connection between estimation entropy, Lyapunov exponents, and average data rate
was examined under suitable regularity conditions in [41].

The main objective of this paper is to establish upper and lower bounds on the topological entropy
of general and interconnected nonlinear time-varying systems. We introduce the definition of topological
entropy in Section 2 and examine its dependence on the initial time and the set of initial states. We show
that changing the initial time does not affect the entropy if the system is reinitialized from the corresponding
reachable set, but it may differ if initialized from the original initial set. In Section 3, we present two general
upper bounds on the entropy of nonlinear time-varying systems. One upper bound is constructed using the
matrix measure of the system Jacobian, while the other is based on the largest real part of the eigenvalues
of the Jacobian matrix with off-diagonal entries replaced by their absolute values. A general lower bound
is also constructed using the trace of the Jacobian matrix. Moreover, we specialize these results to linear
time-varying systems and provide examples illustrating that neither upper bound is uniformly tighter than
the other.
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In Section 4, we consider the interconnected case and first derive an upper bound on entropy by
adapting one of the general upper bounds from Section 3, using the matrix measure of an interconnection
matrix function. We then develop a new upper bound based on the largest real part of the eigenvalues of
this function. Notably, this new bound is closely related to the individual upper bounds for subsystems.
Moreover, it implies each of the two general upper bounds from Section 3 when the system is viewed as
an interconnection composed of either a single subsystem or scalar subsystems. These entropy bounds all
depend only on the values of the Jacobian matrix over the ω-limit set or its convex variations.

In Section 5, we provide additional upper bounds on entropy for both general and interconnected systems,
along with a remark on constructing analytically more tractable but potentially less tight bounds. The proofs
of the main results are presented in Section 6, following preliminary lemmas including a key componentwise
bound on the separation between trajectories for interconnected systems. Section 7 concludes the paper with
a brief summary and remarks on future research directions.

Notations: For vectors v1 ∈ Rn1 , . . . , vm ∈ Rnm , let (v1, . . . , vm) ∈ Rn1+···+nm denote their con-
catenation. Let tr(A) denote the trace of a matrix A ∈ Rn×n. For a Metzler matrix M (i.e., a matrix
with nonnegative off-diagonal entries), let λmax(M) denote its eigenvalue with the largest real part; then
λmax(M) ∈ R (see, e.g., [42, Th. 9.4, p. 129]). Let #E denote the cardinality of a finite set E. For a set
S ⊂ Rn, let vol(S) and co(S) denote its volume (Lebesgue measure) and convex hull, respectively. For a vec-
tor v = (v1, . . . , vn) ∈ Rn, let |v|∞ = max1≤i≤n |vi| denote its ∞-norm. For a matrix A = [aij ] ∈ Rn×n,
let ∥A∥∞ = max1≤i≤n

∑n
j=1 |aij | denote its induced ∞-norm. By default, all logarithms are natural

logarithms (to avoid an extra multiplicative factor ln 2 in entropy computations).

2 Preliminaries

Consider a continuous-time nonlinear time-varying dynamical system

ẋ = f(t, x), t ≥ t0, (1)

where x ∈ Rn is the state and t0 ∈ R is the initial time. Assume that f(t, x) is piecewise continuous in t,
continuously differentiable in x, and that (1) is forward complete. Let ξ(t, t0, x) denote the solution of (1) at
time t with initial state x at time t0. Under these assumptions, ξ(t, t0, x) is unique, continuously differentiable
in x, absolutely continuous in t, and satisfies (1) away from discontinuities of f(t, x) in t. Moreover, its
Jacobian matrix Jxξ(t, t0, x) is absolutely continuous and piecewise continuously differentiable in t (see,
e.g., [43, Th. 7, p. 24]). For brevity, we write

Jxf(t, v) := Jxf(t, x)
∣∣∣
x=v

, Jxξ(t, t0, v) := Jxξ(t, t0, x)
∣∣∣
x=v

for the Jacobian matrices of f(t, x) and ξ(t, t0, x) with respect to x evaluated at x = v, respectively.

2.1 Entropy definition

We define the topological entropy of the nonlinear time-varying system (1) with initial states drawn from a
compact set K ⊂ Rn with nonempty interior, referred to as the initial set. Let | · | be a norm on Rn, and
∥ · ∥ the corresponding induced norm on Rn×n. Given a time horizon T ≥ 0 and a radius ε > 0, define the
following open ball in Rn centered at x:

Bf,t0(x, ε, T ) :=
{

x̄ ∈ Rn : max
t∈[t0,t0+T ]

|ξ(t, t0, x̄) − ξ(t, t0, x)| < ε

}
. (2)
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A subset E ⊂ K is said to be (T, ε)-spanning (for the initial set K at initial time t0) if

K ⊂
⋃

x∈E

Bf,t0(x, ε, T ), (3)

that is, for every x̄ ∈ K, there exists x ∈ E such that |ξ(t, t0, x̄) − ξ(t, t0, x)| < ε for all t ∈ [t0, t0 + T ].
Let S(f, t0, ε, T, K) ≥ 1 denote the minimal cardinality of a (T, ε)-spanning set; equivalently, it is the
cardinality of a minimal (T, ε)-spanning set. This function is nondecreasing in T and nonincreasing in
ε. The topological entropy of the system (1) with initial set K at initial time t0 is defined in terms of the
exponential growth rate of S(f, t0, ε, T, K):

h(f, t0, K) := lim
ε↘0

lim sup
T →∞

1
T

log S(f, t0, ε, T, K). (4)

For brevity, we occasionally refer to h(f, t0, K) simply as the (topological) entropy of (1).
Remark 1. By the equivalence of norms on finite-dimensional vector spaces, the value of h(f, t0, K)
independent of the choice of norm | · | on Rn. In particular, it is invariant under a change of basis. More
generally, topological entropy can be defined on a metric space (X, d) rather than the normed space (Rn, | · |),
in which case its value may depend on the chosen metric. However, if the initial set is contained in a compact
positively invariant set, the topological entropy is a topological invariant. See [9, Prop. 3.1.2, p. 109]
[12, p. 165], and [16, p. 1703] for further discussion.

Next, we provide an alternative definition of the entropy of (1). Given T ≥ 0 and ε > 0 as before, a
subset E ⊂ K is said to be (T, ε)-separated (for the initial set K at initial time t0) if

x̄ /∈ Bf,t0(x, ε, T ) ∀ x, x̄ ∈ E : x̄ ̸= x,

that is, for all distinct x, x̄ ∈ E, there exists t ∈ [t0, t0 + T ] such that |ξ(t, t0, x̄) − ξ(t, t0, x)| ≥ ε.
Let N(f, t0, ε, T, K) ≥ 1 denote the maximal cardinality of a (T, ε)-separated set; equivalently, it is the
cardinality of a maximal (T, ε)-separated set. This function is nondecreasing in T and nonincreasing in ε.
The following lemma shows that the entropy of (1) can equivalently be defined in terms of the exponential
growth rate of N(f, t0, ε, T, K); its proof adapts the arguments in [9, p. 110] and is omitted.

Lemma 1. The topological entropy of the system (1) satisfies

h(f, t0, K) = lim
ε↘0

lim sup
T →∞

1
T

log N(f, t0, ε, T, K). (5)

In the special case where (1) is time-invariant, we adopt the convention t0 = 0, that is, we consider the
nonlinear time-invariant system

ẋ = f(x), t ≥ 0 (6)

with a continuously differentiable function f : Rn → Rn. For brevity, when discussing time-invariant
systems, we omit t0 from the entropy-related notations introduced above.

2.2 Initial set and initial time

We examine how the topological entropy h(f, t0, K) of the nonlinear time-varying system (1) depends on
the choice of initial set K and initial time t0. We begin with a lemma characterizing entropy over a finite
cover of K. The proof is analogous to that of [9, Prop. 3.1.7, p. 111] and is omitted.
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Lemma 2. Let K1, . . . , Kk ⊂ K form a finite cover of the initial set K, that is, K =
⋃

1≤l≤k Kl, where
each Kl is a compact set with nonempty interior. The topological entropy of the system (1) satisfies

h(f, t0, K) = max
1≤l≤k

h(f, t0, Kl).

Let ξ(t, t0, K) := {ξ(t, t0, x) : x ∈ K} denote the reachable set at time t of solutions starting from the
set K at time t0. By definition, ξ(t0, t0, K) = K. The dependence of the entropy h(f, t0, K) on the initial
time t0 raises the following question: for a new initial time t1, should K be interpreted as the reachable set
at t0 or at t1? In the former case, the entropy remains unchanged, as stated in the following lemma. The
proof is provided in Appendix A.1.

Lemma 3. The topological entropy of the system (1) satisfies

h(f, t0, K) = h(f, t1, ξ(t1, t0, K)) ∀ t1 ≥ t0. (7)

Similar time-varying results for discrete-time systems with equicontinuous functions and for continuous-
time systems on compact invariant sets appeared in [13, Prop. 2.1] and [14, Lemma 2.8], respectively. Both
results build on the definition and properties of topological entropy developed in [11, 12].

However, the entropy of (1) may differ for different initial sets or for the same initial set at different initial
times, as illustrated in the following example. The first case is demonstrated for the nonlinear time-invariant
system (6), which is a special case of (1).

Example 1. Consider the function g : R → R defined by

g(x) :=


0, x < −1,√

3 −
√

3 − (x + 1)2, −1 ≤ x ≤ 1/2,√
3x, x > 1/2.

1. (Different initial sets.) Consider the nonlinear time-invariant system (6) with f(x) = g(x). For an initial
set K1 ⊂ (−∞, −1), we have h(g, K1) = 0. For an initial set K2 ⊂ (1, ∞), we have h(g, K2) =

√
3.

2. (The same initial set at different initial times.) Consider the nonlinear time-varying system (1) with

f(t, x) :=
{

g(x + 4), t < 0,

g(x), t ≥ 0,

and fix the initial set K := [−3, −2]. For an initial time t0 ≥ 0, we have h(f, t0, K) = h(g, K) = 0. For
an initial time t1 ≤ −1, the solution satisfies ξ(t, t1, x) = e

√
3(t−t1)(x + 4) − 4 for t ∈ [t1, 0) and x ∈ K.

Hence, the reachable set at t = 0 is the interval ξ(0, t1, K) = [e−
√

3t1 − 4, 2e−
√

3t1 − 4] ⊂ (1, ∞). By
(7), we have h(f, t1, K) = h(f, 0, ξ(0, t1, K)) = h(g, ξ(0, t1, K)) =

√
3.

Consider the special case where (1) is a linear time-varying (LTV) system

ẋ = A(t) x, t ≥ t0 (8)

with a piecewise-continuous matrix-valued function A : R → Rn×n. The following lemma extends
[37, Prop. 2] from switched linear systems to general LTV systems.

Lemma 4. The topological entropy of the LTV system (8) is independent of the choices of initial set and
initial time.

Proof. Independence from the initial set follows from arguments analogous to those in the proof of [37,
Prop. 2]. Independence from the initial time then follows from (7).

In light of Lemma 4, we omit the initial set K and initial time t0 and let h(A) denote the entropy of the
LTV system (8).
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3 Entropy of nonlinear time-varying systems

In this section, we present upper and lower bounds on the topological entropy of the nonlinear time-varying
system (1). We begin by recalling the notion of matrix measure, which will be used to construct upper
bounds.

Given an induced norm ∥ · ∥ onRn×n, the matrix measure (or logarithmic norm) of a matrix A ∈ Rn×n,
denoted by µ(A), is the right-sided directional derivative of the norm at the identity matrix I in the direction
of A, and is defined by1

µ(A) := lim
t↘0

∥I + tA∥ − 1
t

.

As shown in [45, Th. 2.2.16, p. 22], the matrix measure satisfies

−µ(−A) ≤ Re(λ) ≤ µ(A) ≤ ∥A∥ ∀ A ∈ Rn×n, (9)

for any eigenvalue λ of A, where Re(λ) denotes its real part. Moreover,

µ(A + B) ≤ µ(A) + µ(B), µ(cA) = cµ(A) ∀ A, B ∈ Rn×n, c ≥ 0.

In particular, µ(·) is a convex function. For standard induced norms, explicit expressions for µ(A) are
available. For example, for the induced ∞-norm, the matrix measure of A = [aij ] ∈ Rn×n is

µ(A) = max
1≤i≤n

aii +
∑
j ̸=i

|aij |

.

See [45, Sec. 2.2.2] and [44, Fact 11.15.7, p. 690] for further properties of the matrix measure.
The following theorem provides upper and lower bounds on the entropy of the system (1). The proof,

which partly builds on results for interconnected systems in the next section, is given in Section 6.4.

Theorem 1. The topological entropy of the system (1) is upper bounded by

h(f, t0, K) ≤ n max{µ̂, 0} (10)

with
µ̂ := lim sup

t→∞
max

v∈co(ξ(t,t0,K))
µ(Jxf(t, v)), (11)

and lower bounded by
h(f, t0, K) ≥ max{χ̌, 0} (12)

with
χ̌ := lim inf

t→∞
min

v∈ξ(t,t0,K)
tr(Jxf(t, v)). (13)

The upper and lower limits in (11) and (13) have useful implications for the bounds on entropy. The
upper bound in (10) depends only on the matrix measure of the Jacobian Jxf(t, x) over the convex hull of the
ω-limit set of solutions starting from the initial set K. Similarly, the lower bound in (12) depends only on the
trace of Jxf(t, x) over the ω-limit set. These formulations allow flexibility in deriving tighter or analytically
more tractable bounds, depending on the complexity of characterizing the ω-limit set or its convex hull. See
Remark 2 in Section 5 for further discussion.

As a preview of results for interconnected systems, we provide an alternative upper bound on the entropy
of (1) that involves neither an induced norm ∥·∥ nor a matrix measure µ(·). The proof is given in Section 6.4.
This bound is obtained by viewing (1) as n interconnected scalar subsystems. For each i ∈ {1, . . . , n}, let
xi and fi(t, x) denote the i-th scalar components of the state x and the function f(t, x) in (1), respectively.

1The matrix measure µ(A) can also be interpreted as the right-sided derivative of the functions t 7→ ∥eAt∥ and t 7→ log ∥eAt∥
at t = 0 [44, Fact 11.15.7, p. 690].
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Proposition 1. Suppose the function f(t, x) in (1) admits a Metzler matrix Â = [âij ] ∈ Rn×n such that

âii ≥ lim sup
t→∞

max
v∈co(ξ(t,t0,K))

∂xi
fi(t, v),

âij ≥ lim sup
t→∞

max
v∈co(ξ(t,t0,K))

|∂xj
fi(t, v)|

∀ i, j ∈ {1, . . . , n} : i ̸= j. (14)

Then the topological entropy of the system (1) is upper bounded by

h(f, t0, K) ≤ n max
{

λmax(Â), 0
}

. (15)

Comparing the upper bounds on entropy in Theorem 1 and Proposition 1, we observe that the bound in
(10) holds for all induced norms and the corresponding matrix measures, whereas the bound in (15) does
not involve either. Both bounds are useful, as neither is uniformly tighter than the other. On the one hand,
by the second inequality in (9), the bound in (15) is tighter when, for example, (1) is a linear time-invariant
(LTI) system

ẋ = Ax, t ≥ 0 (16)

with a constant Metzler matrix A ∈ Rn×n. On the other hand, the bound in (10) may be tighter due to the
entrywise upper limits in (14), as illustrated in Example 2 below. Additional upper bounds on the entropy of
(1) are given in Section 5.

3.1 Entropy of LTV systems

We now specialize the bounds on entropy from Theorem 1 and Proposition 1 to the LTV system (8).

Corollary 1. The topological entropy of the LTV system (8) is upper bounded by

h(A) ≤ n max
{

lim sup
t→∞

µ(A(t)), 0
}

(17)

and lower bounded by

h(A) ≥ max
{

lim inf
t→∞

tr(A(t)), 0
}

.

Moreover, suppose the matrix-valued function A(t) = [aij(t)] ∈ Rn×n in (8) admits a Metzler matrix
Â = [âij ] ∈ Rn×n such that

âii ≥ lim sup
t→∞

aii(t), âij ≥ lim sup
t→∞

|aij(t)| ∀ i, j ∈ {1, . . . , n} : i ̸= j. (18)

Then the topological entropy of (8) is upper bounded by

h(A) ≤ n max
{

λmax(Â), 0
}

. (19)

As discussed following Proposition 1, the upper bounds in (17) and (19) are both useful, since neither
is uniformly tighter. The bound in (19) is tighter when the matrix-valued function A(t) in (8) is a constant
Metzler matrix, whereas the bound in (17) is tighter in the following example.

Example 2. Let

A1 =
[
1 0
1 0

]
, A2 =

[
0 1
0 1

]
.
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Consider the LTV system (8) with A(t) = A1 sin(t) + A2 cos(t), and let µ(·) be the matrix measure defined
using the induced ∞-norm ∥ · ∥∞. Then

µ(A(t)) = max{sin(t) + |cos(t)|, |sin(t)| + cos(t)},

and thus lim supt→∞ µ(A(t)) =
√

2. Hence, the upper bound in (17), or equivalently (10), yields h(A) ≤
2
√

2. On the other hand, for all matrices Â satisfying (18), we have â11, â12, â21, â22 ≥ 1, and thus

λmax(Â) = (â11 + â22)/2 +
√

â12â21 + (â11 − â22)2/4 ≥ 2.

Hence, the upper bound in (19), or equivalently (15), yields h(A) ≤ 4. Therefore, the bound in (17) or (10)
is tighter than that in (19) or (15) for this example.

4 Entropy of interconnected systems

In this section, we consider the case where the nonlinear time-varying system (1) is composed of m ≥ 2
interconnected subsystems. For each i ∈ {1, . . . , m}, let xi ∈ Rni denote the state of the i-th subsystem, and
let fi(t, x) ∈ Rni denote the corresponding component function of f(t, x) in (1). Then n1 + · · · + nm = n,
and (1) can be written as the interconnected nonlinear time-varying system

ẋi = fi(t, x1, . . . , xm), t ≥ t0, i ∈ {1, . . . , m}. (20)

The overall state and system function are given by x = (x1, . . . , xm) and f(t, x) = (f1(t, x), . . . , fm(t, x)),
respectively. For brevity, we write

Jxj
fi(t, v) := Jxj

fi(t, x)
∣∣∣
x=v

for the Jacobian matrix of fi(t, x) with respect to xj evaluated at x = v.
We first derive an upper bound on the topological entropy of the interconnected system (20) by adapting the

upper bound in Theorem 1 for the general system (1), using only information captured by an interconnection
matrix function. Following [46], we assume that the following norms are given:
1. for each i ∈ {1, . . . , m}, a “local” norm | · |i on Rni , and
2. a “network” norm | · |N on Rm that is monotone: for all nonnegative vectors v, w ∈ Rm

≥0,

v ≥ w =⇒ |v|N ≥ |w|N.

In particular, all p-norms with p ≥ 1 are monotone.2
For a vector v = (v1, . . . , vm) ∈ Rn with vi ∈ Rni , we define the “global” norm | · |G by

|v|G := |(|v1|1, . . . , |vm|m)|N. (21)

As | · |N is monotone, one can verify that | · |G satisfies the triangle inequality and is indeed a norm. Let
∥ · ∥i, ∥ · ∥N, and ∥ · ∥G denote the corresponding induced norms onRni×ni ,Rm×m, andRn×n, respectively,
and let µi(·), µN(·), and µG(·) denote the corresponding matrix measures. We also define the corresponding
mixed induced norms ∥ · ∥ij on Rni×nj by

∥A∥ij := max
|v|j=1

|Av|i, i, j ∈ {1, . . . , m}.

As | · |N is monotone, the induced norm ∥ ·∥N satisfies a monotonicity property for nonnegative matrices.
Moreover, the induced norm of matrix exponential and the matrix measure µN(·) also satisfy monotonicity
properties for Metzler matrices, as stated in the following lemma.

2Inequalities between vectors or matrices are interpreted entrywise (e.g., A ≥ 0 means that A is a nonnegative matrix).
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Lemma 5. 1. For all nonnegative matrices A, B ∈ Rm×m
≥0 , we have

A ≥ B =⇒ ∥A∥N ≥ ∥B∥N. (22)

2. For all Metzler matrices A, B ∈ Rm×m, we have

A ≥ B =⇒ ∥eA∥N ≥ ∥eB∥N, (23)

and
A ≥ B =⇒ µN(A) ≥ µN(B). (24)

Proof. The implications in (22) and (24) are established in [39, Lemma 2]. To prove (23), let A and B be
Metzler matrices with A ≥ B. Then there exists a sufficiently large integer k0 ≥ 0 such that, for all integers
k ≥ k0, we have I + A/k ≥ I + B/k ≥ 0 and thus (I + A/k)k ≥ (I + B/k)k ≥ 0. Therefore, by the
definition eA := limk→∞(I + A/k)k, we have eA ≥ eB ≥ 0, and (23) follows from (22).

Consider the interconnection matrix function AN(t, x) = [aij(t, x)] ∈ Rm×m defined by

aii(t, x) := µi(Jxi
fi(t, x)), aij(t, x) := ∥Jxj

fi(t, x)∥ij , i, j ∈ {1, . . . , m} : i ̸= j. (25)

By adapting the upper bound in (10) on the entropy of the general system (1) to the interconnected system
(20), we obtain the following result.

Corollary 2. The topological entropy of the interconnected system (20) is upper bounded by

h(f, t0, K) ≤ n max{µ̂N, 0} (26)

with
µ̂N := lim sup

t→∞
max

v∈co(ξ(t,t0,K))
µN(AN(t, v)). (27)

Proof. The upper bound in (26) follows from the general upper bound in (10), as the constant µ̂ defined
in (11) using the “global” matrix measure µG(·) satisfies µ̂ ≤ µ̂N, which can be shown using Lemma 6
below.

Lemma 6 ([46, Th. 2]). For a block matrix A = [Aij ] ∈ Rn×n with Aij ∈ Rni×nj for i, j ∈ {1, . . . , m},
suppose there exists a matrix AN = [aij ] ∈ Rm×m such that

aii ≥ µi(Aii), aij ≥ ∥Aij∥ij , ∀ i, j ∈ {1, . . . , m} : i ̸= j.

Then
µG(A) ≤ µN(AN).

We now present a new upper bound on the entropy of the interconnected time-varying system (20),
obtained by extending a result for interconnected time-invariant systems from [31]. The proof is provided in
Section 6.3, following some preliminary lemmas in Sections 6.1 and 6.2.

Theorem 2. Consider the interconnection matrix function AN(t, x) = [aij(t, x)] ∈ Rm×m defined in (25).
Suppose there exists a Metzler matrix ÂN = [âij ] ∈ Rm×m such that

âij ≥ lim sup
t→∞

max
v∈co(ξ(t,t0,K))

aij(t, v) ∀ i, j ∈ {1, . . . , m}. (28)

Then the topological entropy of the interconnected system (20) is upper bounded by

h(f, t0, K) ≤ n max
{

λmax(ÂN), 0
}

. (29)
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The upper bounds on entropy in Corollary 2 and Theorem 2 both depend only on the values of the
Jacobian matrix Jxf(t, x) over the convex hull of the ω-limit set of solutions starting from the initial set
K, as reflected in the upper limits in (27) and (28). Theorem 2 extends [31, Th. 1] by accommodating
time-varying dynamics and by avoiding maximization over all states or even all reachable states.

The bounds in (26) and (29) are both constructed using the interconnection matrix function AN(t, x)
defined in (25). For the bound in (26), we first compute its matrix measure, yielding a scalar-valued function,
and then take the maximum over co(ξ(t, t0, K)) followed by the upper limit as t → ∞ in (27). In contrast,
for the bound in (29), we first take the maximum and upper limit entrywise in (28), yielding a constant matrix
ÂN, and then compute its eigenvalue with the largest real part.

Furthermore, they both hold for all “local” norms and the corresponding matrix measures. The bound
in (26) also holds for all monotone “network” norms and the corresponding matrix measures, whereas the
bound in (29) does not involve either. Both bounds are useful, as neither is uniformly tighter. On the one
hand, by the second inequality in (9), the bound in (29) is tighter when, for example, the interconnection
matrix function AN(t, x) defined in (25) is constant. On the other hand, the bound in (26) may be tighter due
to the entrywise upper limits in (28). This is illustrated by Example 2 in Section 3.1, where the LTV system
can be viewed as an interconnected system (20) with m = 2 and n1 = n2 = 1. Additional upper bounds on
the entropy of (20) are presented in Section 5.

By comparing (28) and the definition of interconnection matrix function (25) to (11), we observe that
each diagonal entry âii of ÂN in the overall bound in (29) coincides with µ̂ in the bound in (10) for the
i-th subsystem. As a result, for systems with a cascade (i.e., triangular) interconnection, the overall bound
in (29) reduces to the maximum among the applications of the bound in (10) to each individual subsystem,
normalized by the corresponding dimensions.

5 Additional upper bounds on entropy

In this section, we present alternative upper bounds on the topological entropy of general and interconnected
nonlinear time-varying systems.

We begin by providing an upper bound on the entropy of the general system (1), followed by one for the
interconnected system (20). Sketches of the proofs are given in Appendix B, with full details presented in
Appendix C.

Proposition 2. The topological entropy of the system (1) is upper bounded by

h(f, t0, K) ≤ n max{µ̂∗, 0} (30)

with
µ̂∗ := inf

t1≥t0
lim sup

t→∞
max

v∈co(ξ(t1,t0,K))
µ(Jxf(t, ξ(t, t1, v))). (31)

The upper bound in (30) depends only on the values of the Jacobian matrix Jxf(t, x) over the ω-limit
set of solutions starting from the convex hull of the reachable set ξ(t1, t0, K), for an arbitrary t1 ≥ t0, as
reflected in the infimum and upper limit in (31). As a result, it is tighter than the upper bound in (10) if
there exists t1 ≥ t0 such that ξ(t1, t0, K) is convex. Moreover, (30) holds for all induced norms and the
corresponding matrix measures.

Proposition 3. Consider the interconnection matrix function AN(t, x) = [aij(t, x)] ∈ Rm×m defined in
(25). Suppose there exists a Metzler matrix Ā∗

N = [ā∗
ij ] ∈ Rm×m such that

ā∗
ij ≥ inf

t1≥t0
sup
t≥t1

max
v∈co(ξ(t1,t0,K))

aij(t, ξ(t, t1, v)) ∀ i, j ∈ {1, . . . , m}. (32)
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Then the topological entropy of the interconnected system (20) is upper bounded by

h(f, t0, K) ≤ n max
{

λmax(Ā∗
N), 0

}
. (33)

The upper bound in (33) depends only on the values of the Jacobian matrix Jxf(t, x) along solutions
starting from the convex hull of the reachable set ξ(t1, t0, K), for an arbitrary t1 ≥ t0, as reflected in the
infimum and supremum in (32). The supremum over t ≥ t1, rather than the upper limit as t → ∞, is
used in (32) due to differences in the application of variational arguments and the use of the maximum
over [t0, t] in Lemma 13 (see Appendices B, C.3, and C.4). Moreover, (33) holds for all “local” norms and
the corresponding matrix measures, and does not involve the “network” norm or the corresponding matrix
measure.

We obtain another upper bound on the entropy of the general system (1) by viewing it as an interconnected
system (20) composed of n scalar subsystems and applying Proposition 3, similarly to the derivation of
Proposition 1 from Theorem 2.

Corollary 3. Suppose the function f(t, x) in (1) admits a Metzler matrix Ā∗ = [ā∗
ij ] ∈ Rn×n such that

ā∗
ii ≥ inf

t1≥t0
sup
t≥t1

max
v∈co(ξ(t1,t0,K))

∂xi
fi(t, ξ(t, t1, v)),

ā∗
ij ≥ inf

t1≥t0
sup
t≥t1

max
v∈co(ξ(t1,t0,K))

|∂xj
fi(t, ξ(t, t1, v))|

∀ i, j ∈ {1, . . . , n} : i ̸= j. (34)

Then the topological entropy of the system (1) is upper bounded by

h(f, t0, K) ≤ n max
{

λmax(Ā∗), 0
}

. (35)

We obtain another upper bound on the entropy of the interconnected system (20) by applying Proposition 2
together with Lemma 6, similarly to the derivation of Corollary 2 from Theorem 1.

Corollary 4. The topological entropy of the interconnected system (20) is upper bounded by

h(f, t0, K) ≤ n max{µ̂∗
N, 0} (36)

with
µ̂∗

N := inf
t1≥t0

lim sup
t→∞

max
v∈co(ξ(t1,t0,K))

µN(AN(t, ξ(t, t1, v))), (37)

where the interconnection matrix function AN(t, x) is defined in (25).

Remark 2. In many scenarios, one can derive bounds on topological entropy that are analytically more
tractable but potentially less tight than those in Theorems 1 and 2 and Propositions 2 and 3. For example,
consider a set S ⊂ Rn such that one of the following conditions holds:
1. S = Rn;
2. S is compact and contains the convex hull of the ω-limit set of solutions starting from the initial set K; or
3. S is compact, positively invariant, and contains the convex hull of the reachable set ξ(t1, t0, K) for some

t1 ≥ t0 (e.g., co(K) ⊂ S).
In this case, the bounds on entropy can be simplified by bounding relevant quantities over the set S. Suppose
there exists a constant µ̂S such that µ̂S ≥ µ(Jxf(t, v)) for all v ∈ S and all sufficiently large t ≥ t0. Then the
upper bound in (10) on the entropy of the system (1) remains valid with µ̂S replacing µ̂. Similar substitutions
apply to all upper and lower bounds on entropy presented in this paper.
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6 Proofs of main results

In this section, we present the proofs of the main results, following some necessary preliminary lemmas.

6.1 Bounds on the separation between trajectories and the volume of the reachable set

We begin by introducing a componentwise upper bound on the separation between trajectories for the
interconnected system (20), which will be used to derive the upper bound on entropy in Theorem 2. For each
i ∈ {1, . . . , m}, let ξi(t, t0, x) denote the solution of the i-th subsystem of (20) at time t with initial state x
at time t0. The overall solution of (20) is then given by ξ(t, t0, x) = (ξ1(t, t0, x), . . . , ξm(t, t0, x)).

Lemma 7. Consider the interconnection matrix function AN(t, x) = [aij(t, x)] ∈ Rm×m defined in (25),
and the matrix-valued function ĀN(t, t0, K) = [āij(t, t0, K)] ∈ Rm×m defined by

āij(t, t0, K) := max
s∈[t0,t]

max
v∈co(ξ(s,t0,K))

aij(s, v), i, j ∈ {1, . . . , m}. (38)

For all initial states x = (x1, . . . , xm), x̄ = (x̄1, . . . , x̄m) ∈ K with xi, x̄i ∈ Rni for all i, the solutions of
the interconnected system (20) satisfy |ξ1(t, t0, x̄) − ξ1(t, t0, x)|1

...
|ξm(t, t0, x̄) − ξm(t, t0, x)|m

 ≤ eĀN(t,t0,K)(t−t0)

 |x̄1 − x1|1
...

|x̄m − xm|m

 ∀ t ≥ t0. (39)

Lemma 7 extends [47, Prop. 1] by introducing the time-varying matrix-valued function ĀN(t, t0, K)
in place of a constant matrix. This generalization is essential for deriving the upper bound on entropy in
Theorem 2. The proof, provided in Appendix A.2, is inspired by the variational construction in the proof of
[47, Prop. 1], which in turn builds on earlier work such as [48, Th. 1] and [49, Th. 4.2].

We next present a lower bound on the volume of the reachable set for the general system (1), which will
be used to derive the lower bound on entropy in Theorem 1. The proof is provided in Appendix A.3.

Lemma 8. The reachable set of solutions of the system (1) starting from K satisfies

vol(ξ(t, t0, K)) ≥ eγ(t,t0) vol(K) ∀ t ≥ t0 (40)

with
γ(t, t0) := min

v∈K

∫ t

t0
tr(Jxf(s, ξ(s, t0, v))) ds.

6.2 Universal spanning and separated sets

Given a time horizon T ≥ 0 and a radius ε > 0, we provide a universal formulation of (T, ε)-spanning and
(T, ε)-separated sets by extending a notion of grid from [37]. For a vector θ = (θ1, . . . , θn) ∈ Rn

>0, which
may depend on T and ε, define the following grid in K centered at an arbitrary x̂ ∈ K:

G(θ) := {x̂ + (k1θ1, . . . , knθn) ∈ K : k1, . . . , kn ∈ Z}. (41)

For each x = (x1, . . . , xn) ∈ G(θ), let R(x) denote the open hyperrectangle in Rn centered at x with side
lengths 2θ1, . . . , 2θn, that is,

R(x) := {(x̄1, . . . , x̄n) ∈ Rn : |x̄1 − x1| < θ1, . . . , |x̄n − xn| < θn}. (42)
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Then
K ⊂

⋃
x∈G(θ)

R(x).

By comparing the hyperrectangle R(x) to the open ball Bf,t0(x, ε, T ) defined in (2), we obtain the
following lemma. The proof is provided in Appendix A.4.

Lemma 9. If the vector θ is selected so that

(R(x) ∩ K) ⊂ Bf,t0(x, ε, T ) ∀ x ∈ G(θ), (43)

then the grid G(θ) is a (T, ε)-spanning set. Moreover, if (43) holds for all T ≥ 0 and ε > 0, and

lim sup
ε↘0

lim sup
T →∞

log θi

T
≤ 0 ∀ i ∈ {1, . . . , n}, (44)

then the topological entropy of the system (1) is upper bounded by

h(f, t0, K) ≤ lim sup
ε↘0

lim sup
T →∞

n∑
i=1

log(1/θi)
T

. (45)

Lemma 9 extends the results on spanning sets and upper bounds on entropy from [37, Lemma 2] and
[39, Lemma 2.3], from switched linear and nonlinear systems, respectively, to general nonlinear time-varying
systems. Note that the condition (44) holds if all θi are nonincreasing in T .

We also provide a similar result for separated sets. The proof is given in Appendix A.5.

Lemma 10. If the vector θ is selected so that

(Bf,t0(x, ε, T ) ∩ K) ⊂ R(x) ∀ x ∈ G(θ), (46)

then the grid G(θ) is a (T, ε)-separated set. Moreover, if (46) holds for all T ≥ 0 and ε > 0, then the
topological entropy of the system (1) is lower bounded by

h(f, t0, K) ≥ lim inf
ε↘0

lim sup
T →∞

n∑
i=1

log(1/θi)
T

. (47)

Lemma 10 extends the results on separated sets and lower bounds on entropy from [37, Lemma 2] and
[39, Lemma 2.3], from switched linear and nonlinear systems, respectively, to general nonlinear time-varying
systems. Note that it does not require a condition analogous to (44).

6.3 Proof of Theorem 2

We begin by deriving an intermediate upper bound on entropy.

Lemma 11. The topological entropy of the interconnected system (20) is upper bounded by

h(f, t0, K) ≤ lim sup
T →∞

n

T
max

t∈[t0,t0+T ]
log ∥eĀN(t,t0,K)(t−t0)∥N, (48)

where the matrix-valued function ĀN(t, t0, K) is defined in (38).
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Proof. Consider arbitrary initial states x = (x1, . . . , xm), x̄ = (x̄1, . . . , x̄m) ∈ K with xi, x̄i ∈ Rni for all
i. By applying the componentwise separation bound in (39), together with the definition of the “global”
norm | · |G in (21), and using the monotonicity of the “network” norm | · |N, we obtain

|ξ(t, t0, x̄) − ξ(t, t0, x)|G =

∣∣∣∣∣∣∣
 |ξ1(t, t0, x̄) − ξ1(t, t0, x)|1

...
|ξm(t, t0, x̄) − ξm(t, t0, x)|m


∣∣∣∣∣∣∣
N

≤

∣∣∣∣∣∣∣eĀN(t,t0,K)(t−t0)

 |x̄1 − x1|1
...

|x̄m − xm|m


∣∣∣∣∣∣∣
N

≤ ∥eĀN(t,t0,K)(t−t0)∥N

∣∣∣∣∣∣∣
 |x̄1 − x1|1

...
|x̄m − xm|m


∣∣∣∣∣∣∣
N

for all t ≥ t0. By the equivalence of norms on finite-dimensional vector spaces, there exist constants
r1, . . . , rm, rN > 0 such that

|vi|i ≤ ri|vi|∞ ∀ i ∈ {1, . . . , m}, vi ∈ Rni

for the “local” norms | · |i, and
|v|N ≤ rN|v|∞ ∀ v ∈ Rm

for the “network” norm | · |N. Consequently,

|ξ(t, t0, x̄) − ξ(t, t0, x)|G ≤ ∥eĀN(t,t0,K)(t−t0)∥NrN max
1≤i≤m

|x̄i − xi|i

≤ ∥eĀN(t,t0,K)(t−t0)∥NrN max
1≤i≤m

ri|x̄i − xi|∞

for all t ≥ t0. Therefore, for arbitrary T ≥ 0 and ε > 0, we have

max
t∈[t0,t0+T ]

|ξ(t, t0, x̄) − ξ(t, t0, x)|G ≤ max
1≤i≤m

(
max

t∈[t0,t0+T ]
∥eĀN(t,t0,K)(t−t0)∥N

)
rNri|x̄i − xi|∞.

Consider the grid G(θ) defined in (41) with the vector θ = (θ̄11n1 , . . . , θ̄m1nm) ∈ Rn
>0, where

θ̄i := ε

/(
rNri max

t∈[t0,t0+T ]
∥eĀN(t,t0,K)(t−t0)∥N

)
, i ∈ {1, . . . , m}

and 1ni denotes the vector of ones in Rni . By comparing the corresponding hyperrectangles R(x) defined
in (42) to the open balls Bf,t0(x, ε, T ) defined in (2) with the “global” norm | · |G, we obtain (R(x) ∩ K) ⊂
Bf,t0(x, ε, T ) for all x ∈ G(θ). Then Lemma 9 implies that G(θ) is a (T, ε)-spanning set. Moreover, the
upper bound on entropy in (45) holds as T ≥ 0 and ε > 0 are arbitrary and all θ̄i are nonincreasing in T .
Therefore,

h(f, t0, K) ≤ lim sup
ε↘0

lim sup
T →∞

m∑
i=1

ni log(1/θ̄i)
T

= lim sup
T →∞

m∑
i=1

ni

T
max

t∈[t0,t0+T ]
log ∥eĀN(t,t0,K)(t−t0)∥N + lim

ε↘0
lim

T →∞

C

T
,

where C :=
∑m

i=1 ni log(rNri/ε) is independent of T and thus satisfies C/T → 0 as T → ∞. As
n1 + · · · + nm = n, we conclude that the entropy h(f, t0, K) satisfies the upper bound in (48).

14



We now establish the upper bound on entropy in (29).

Proof of Theorem 2. By the definition of the upper limit in (28), for each δ1 > 0, there exists a sufficiently
large t1 ≥ t0 such that

sup
t≥t1

max
v∈co(ξ(t,t0,K))

aij(t, v) ≤ âij + δ1 ∀ i, j ∈ {1, . . . , m}.

As ξ(t, t0, K) = ξ(t, t1, ξ(t1, t0, K)), the matrix-valued function ĀN(t, t0, K) defined in (38) satisfies

ĀN(t, t1, ξ(t1, t0, K)) ≤ ÂN + δ11 ∀ t ≥ t1,

where 1 denotes the matrix of ones in Rm×m.
By Lemma 3, we have h(f, t0, K) = h(f, t1, ξ(t1, t0, K)). Then applying Lemma 11 with the new

initial time t1 yields

h(f, t1, ξ(t1, t0, K)) ≤ lim sup
T →∞

n

T
max

t∈[t1,t1+T ]
log ∥eĀN(t,t1,ξ(t1,t0,K))(t−t1)∥N.

Moreover, as ĀN(t, t1, ξ(t1, t0, K)) and ÂN + δ11 are both Metzler matrices, the monotonicity property in
(23) implies that

∥eĀN(t,t1,ξ(t1,t0,K))(t−t1)∥N ≤ ∥e(ÂN+δ11)(t−t1)∥N

≤ ∥eÂN(t−t1)∥N∥eδ11(t−t1)∥N ≤ ∥eÂN(t−t1)∥Neδ1∥1∥N(t−t1)

for all t ≥ t1. Therefore,

h(f, t0, K) ≤ lim sup
T →∞

n

T
max

t∈[t1,t1+T ]
(log ∥eÂN(t−t1)∥N + δ1∥1∥N(t − t1))

≤ lim sup
T →∞

n

T
max

t∈[0,T ]
log ∥eÂNt∥N + nδ1∥1∥N.

As δ1 > 0 is arbitrary, we have

h(f, t0, K) ≤ lim sup
T →∞

n

T
max

t∈[0,T ]
log ∥eÂNt∥N.

According to [44, Fact 11.15.7, p. 690], as ÂN is a Metzler matrix, its eigenvalue with the largest real
part λmax(ÂN) satisfies

λmax(ÂN) = lim
t→∞

1
t

log ∥eÂNt∥N.

Hence, for each δ2 > 0, there exists a sufficiently large t2 ≥ 0 such that

log ∥eÂNt∥N ≤ (λmax(ÂN) + δ2) t ∀ t ≥ t2.

Consequently,
1
T

max
t∈[0,T ]

log ∥eÂNt∥N ≤ max
{

λmax(ÂN) + δ2,
Ct2

T

}
∀ T ≥ 0,

where Ct2 := maxt∈[0,t2] log ∥eÂNt∥N is independent of T and thus satisfies Ct2/T → 0 as T → ∞.
Therefore,

h(f, t0, K) ≤ lim sup
T →∞

n

T
max

t∈[0,T ]
log ∥eÂNt∥N

≤ n max{λmax(ÂN) + δ2, 0}.

As δ2 > 0 is arbitrary, we conclude that the entropy h(f, t0, K) satisfies the upper bound in (29).
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6.4 Proof of Theorem 1 and Proposition 1

Proof of Theorem 1. First, the general system (1) can be viewed as an interconnected system (20) with a
single subsystem. Consequently, the upper bound in (10) on the entropy of (1) follows from the upper bound
in (29) on the entropy of (20) by setting m = 1 and letting the “local” matrix measure µ1(·) be the given
matrix measure µ(·).

Second, we prove the lower bound in (12) using volume-based arguments. For arbitrary T ≥ 0 and
ε > 0, the lower bound in (40) on the volume of the reachable set implies

vol(ξ(t0 + T, t0, K)) ≥ eγ(t0+T,t0) vol(K).

Let E be a minimal (T, ε)-spanning set. By the equivalence of norms on finite-dimensional vector spaces,
there exists a constant r∞ > 0 such that

|v|∞ ≤ r∞|v| ∀ v ∈ Rn

for the given norm | · |. Hence

ξ(t0 + T, t0, K) ⊂
⋃

x∈E

{x̄ ∈ Rn : |x̄ − ξ(t0 + T, t0, x)| < ε}

⊂
⋃

x∈E

{x̄ ∈ Rn : |x̄ − ξ(t0 + T, t0, x)|∞ < r∞ε},

and thus

vol(ξ(t0 + T, t0, K)) ≤
∑
x∈E

vol({x̄ ∈ Rn : |x̄ − ξ(t0 + T, t0, x)|∞ < r∞ε}) = (2r∞ε)n#E.

Therefore, the minimal cardinality of a (T, ε)-spanning set satisfies

S(f, t0, ε, T, K) = #E ≥ vol(ξ(t0 + T, t0, K))
(2r∞ε)n

≥ eγ(t0+T,t0) vol(K)
(2r∞ε)n

.

Consequently, by the definition of entropy (4), we have

h(f, t0, K) ≥ lim inf
ε↘0

lim sup
T →∞

γ(t0 + T, t0) + log(vol(K)/(2r∞ε)n)
T

= lim sup
T →∞

γ(t0 + T, t0)
T

+ lim
ε↘0

lim
T →∞

C

T
,

where C := log(vol(K)/(2r∞ε)n) is independent of T and thus satisfies C/T → 0 as T → ∞. As the
minimum in γ(t0 + T, t0) is a superadditive function, we have

h(f, t0, K) ≥ lim sup
T →∞

1
T

∫ t0+T

t0

(
min
v∈K

tr(Jxf(s, ξ(s, t0, v)))
)

ds,

By the definition of the lower limit in (13), for each δ1 > 0, there exists a sufficiently large t1 ≥ t0 such
that

min
v∈K

tr(Jxf(t, ξ(t, t0, v))) ≥ χ̌ − δ1 ∀ t ≥ t1.

Consequently,

1
T

∫ t0+T

t0

(
min
v∈K

tr(Jxf(s, ξ(s, t0, v)))
)

ds ≥ χ̌ − δ1 + Ct1

T
∀ T ≥ t1 − t0,
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where Ct1 :=
∫ t1

t0

(
minv∈K tr(Jxf(s, ξ(s, t0, v))) − (χ̌ − δ1)

)
ds is independent of T and thus satisfies

Ct1/T → 0 as T → ∞. Therefore,

h(f, t0, K) ≥ lim sup
T →∞

1
T

∫ t0+T

t0

(
min
v∈K

tr(Jxf(s, ξ(s, t0, v)))
)

ds ≥ χ̌ − δ1.

As δ1 > 0 is arbitrary and h(f, t0, K) ≥ 0, we conclude that the entropy h(f, t0, K) satisfies the lower
bound in (12).

Proof of Proposition 1. The general system (1) can be viewed as an interconnected system (20) composed
of n scalar subsystems. Consequently, the upper bound in (15) on the entropy of (1) follows from the upper
bound in (29) on the entropy of (20) by setting m = n and letting the “local” norms be the absolute value
(in which case the “local” matrix measure of a scalar is simply the scalar itself).

7 Conclusion

This paper studied the topological entropy of general and interconnected nonlinear time-varying systems.
We analyzed the dependence of entropy on the initial set and initial time, and established both upper and
lower bounds on entropy. For interconnected systems, we constructed an interconnection matrix function
that captures information from the Jacobian matrices of each subsystem and their interactions. We then
derived upper bounds on entropy in terms of either the matrix measure of this function or its eigenvalue
with the largest real part, maximized over the ω-limit set or its convex variations. For general systems, we
established upper bounds on entropy by viewing them as interconnected systems composed of either a single
subsystem or scalar subsystems. This yielded two upper bounds on entropy, neither of which is uniformly
tighter.

This framework provides a flexible method for constructing bounds on entropy, with several notable
features:
• It enables the derivation of tighter or analytically more tractable bounds, depending on the complexity of

characterizing the ω-limit set or its convex variations.
• It is modularized into three steps: constructing a bound on the separation between trajectories (Section 6.1),

formulating spanning and separated sets (Section 6.2), and deriving a bound on entropy (Section 6.3).
Each step can be adapted individually for different applications, as illustrated in part by the alternative
bounds in Section 5.

• Beyond decomposing a system into scalar subsystems, the method supports arbitrary decompositions,
which can potentially be optimized based on the system structure.

Future work will focus on improving the bounds by further analyzing the effect of time-varying dynamics
(cf. [39]), extending the framework to systems with special structure such as cascade interconnection, and
studying the computational complexity of the proposed bounds.

A Proofs of technical lemmas

A.1 Proof of Lemma 3

Fix t1 ≥ t0 and let K1 := ξ(t1, t0, K). Consider arbitrary T ≥ t1 − t0 and ε > 0.
First, let E0 be a minimal (T, ε)-spanning set for K at t0. We show that E1 := ξ(t1, t0, E0) is a

(t0 + T − t1, ε)-spanning set for K1 at t1. By definition, for each z̄ ∈ K1, there exist x̄ ∈ K and x ∈ E0
such that z̄ = ξ(t1, t0, x̄) and x̄ ∈ Bf,t0(x, ε, T ). Then for z := ξ(t1, t0, x) ∈ E1, we have

|ξ(t, t1, z̄) − ξ(t, t1, z)| = |ξ(t, t0, x̄) − ξ(t, t0, x)| < ε ∀ t ∈ [t1, t0 + T ],
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that is, z̄ ∈ Bf,t1(z, ε, t0 + T − t1). Therefore, K1 ⊂ ∪z∈E1 z̄ ∈ Bf,t1(z, ε, t0 + T − t1). Consequently, the
minimal cardinality of such a set satisfies

S(f, t1, ε, t0 + T − t1, K1) ≤ #E1 = #E0 = S(f, t0, ε, T, K).

By the definition of entropy (4), we conclude that h(f, t1, K1) ≤ h(f, t0, K).
Second, let Ē1 be a minimal (t0 + T − t1, ε)-spanning set for K1 at t1. Then

#Ē1 = S(f, t1, ε, t0 + T − t1, K1) ≤ S(f, t1, ε, T, K1)

as S(f, t1, ε, T, K1) is nondecreasing in T . By definition, for each x̄ ∈ K, there exists z ∈ Ē1 such that
z̄ := ξ(t1, t0, x̄) ∈ Bf,t1(z, ε, t0 + T − t1), that is,

|ξ(t, t0, x̄) − ξ(t, t1, z)| = |ξ(t, t1, z̄) − ξ(t, t1, z)| < ε ∀ t ∈ [t1, t0 + T ].

Hence, for

B0(z) :=
{

x̄ ∈ K : max
t∈[t1,t0+T ]

|ξ(t, t0, x̄) − ξ(t, t1, z)| < ε

}
,

we have K ⊂
⋃

z∈Ē1
B0(z). For each z ∈ Ē1, let E0(z) be a minimal (t1 − t0, 2ε)-spanning set for B0(z)

at t0. Then

#E0(z) = S(f, t0, 2ε, t1 − t0, B0(z)) ≤ S(f, t0, 2ε, t1 − t0, K) ≤ S(f, t0, ε, t1 − t0, K),

where the first inequality holds as B0(z) ⊂ K, and the second one holds as S(f, t0, ε, t1 − t0, K) is
nonincreasing in ε. We now show that E0(z) is also a (T, 2ε)-spanning set for B0(z) at t0, using the triangle
inequality. By definition, for each x̄ ∈ B0(z), there exists x ∈ E0(z) ⊂ B0(z) such that

|ξ(t, t0, x̄) − ξ(t, t0, x)| < 2ε ∀ t ∈ [t0, t1].

Moreover, for all t ∈ [t1, t0 + T ], as x, x̄ ∈ B0(z), we also have

|ξ(t, t0, x̄) − ξ(t, t0, x)| ≤ |ξ(t, t0, x̄) − ξ(t, t1, z)| + |ξ(t, t0, x) − ξ(t, t1, z)| < 2ε.

Hence x̄ ∈ Bf,t0(x, 2ε, T ), and thus B0(z) ⊂
⋃

x∈E0(z) Bf,t0(x, 2ε, T ). Therefore,

K ⊂
⋃

z∈Ē1

B0(z) ⊂
⋃

z∈Ē1

⋃
x∈E0(z)

Bf,t0(x, 2ε, T ),

that is,
⋃

z∈Ē1
E0(z) is a (T, 2ε)-spanning set for K at t0. Consequently, the minimal cardinality of such a

set satisfies

S(f, t0, 2ε, T, K) ≤
∑

z∈Ē1

#E0(z) ≤ S(f, t1, ε, T, K1) S(f, t0, ε, t1 − t0, K).

By the definition of entropy (4), we conclude that

h(f, t0, K) = lim
ε↘0

lim sup
T →∞

1
T

log S(f, t0, 2ε, T, K)

≤ lim
ε↘0

lim sup
T →∞

1
T

log S(f, t1, ε, T, K1) + lim
ε↘0

lim
T →∞

1
T

log S(f, t0, ε, t1 − t0, K)

≤ lim
ε↘0

lim sup
T →∞

1
T

log S(f, t1, ε, T, K1) = h(f, t1, K1).
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A.2 Proof of Lemma 7

Lemma 7 is established based on the following property of the interconnected LTV system

ẋi =
m∑

j=1
Aij(t) xj , t ≥ t0, i ∈ {1, . . . , m}, (49)

where Aij : R → Rni×nj are piecewise-continuous matrix-valued functions.

Lemma 12. Consider the matrix-valued function Ālin
N (t, t0) = [ālin

ij (t, t0)] ∈ Rm×m defined by

ālin
ii (t, t0) := max

s∈[t0,t]
µi(Aii(s)),

ālin
ij (t, t0) := max

s∈[t0,t]
∥Aij(s)∥ij ,

i, j ∈ {1, . . . , m} : i ̸= j. (50)

For all initial states x = (x1, . . . , xm) ∈ Rn with xi ∈ Rni for all i, the solution of the interconnected LTV
system (49) satisfies  |ξ1(t, t0, x)|1

...
|ξm(t, t0, x)|m

 ≤ eĀlin
N (t,t0)(t−t0)

 |x1|1
...

|xm|m

 ∀ t ≥ t0. (51)

Proof. For all i ∈ {1, . . . , m}, t1 ≥ t0, and t ∈ [t0, t1], the right-sided derivative of the function t 7→
|ξi(t, t0, x)|i, denoted by ∂+

t |ξi(t, t0, x)|i, satisfies

∂+
t |ξi(t, t0, x)|i = lim

s↘0

|ξi(t + s, t0, x)|i − |ξi(t, t0, x)|i
s

= lim
s↘0

|ξi(t, t0, x) + s
∑m

j=1 Aij(t) ξj(t, t0, x)|i − |ξi(t, t0, x)|i
s

≤ lim
s↘0

|(I + sAii(t)) ξi(t, t0, x)|i − |ξi(t, t0, x)|i
s

+
∑
j ̸=i

|Aij(t) ξj(t, t0, x)|i

≤ lim
s↘0

∥I + sAii(t)∥i − 1
s

|ξi(t, t0, x)|i +
∑
j ̸=i

∥Aij(t)∥ij |ξj(t, t0, x)|j

= µi(Aii(t))|ξi(t, t0, x)|i +
∑
j ̸=i

∥Aij(t)∥ij |ξj(t, t0, x)|j

≤ ālin
ii (t1, t0)|ξi(t, t0, x)|i +

∑
j ̸=i

ālin
ij (t1, t0)|ξj(t, t0, x)|j .

Therefore,

∂+
t

 |ξ1(t, t0, x)|1
...

|ξm(t, t0, x)|m

 ≤ Ālin
N (t1, t0)

 |ξ1(t, t0, x)|1
...

|ξm(t, t0, x)|m

 ∀ t1 ≥ t0, t ∈ [t0, t1].

As Ālin
N (t1, t0) defined in (50) is a Metzler matrix, the upper bound in (51) follows from standard comparison

arguments analogous to those in the proof of [47, Prop. 1].
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Proof of Lemma 7. We prove Lemma 7 by constructing an LTV system (8) with a suitable matrix-valued
function A(t), using variational arguments from nonlinear systems analysis (see, e.g., [45, Sec. 2.5]). We
then reformulate it as the interconnected LTV system (49) and apply Lemma 12.

Fix arbitrary initial states x = (x1, . . . , xm), x̄ = (x̄1, . . . , x̄m) ∈ K with xi, x̄i ∈ Rni for all i, and
define

ν(t, θ) := θξ(t, t0, x̄) + (1 − θ)ξ(t, t0, x), t ≥ t0, θ ∈ [0, 1].
Then

∂t(ξ(t, t0, x̄) − ξ(t, t0, x)) = f(t, ξ(t, t0, x̄)) − f(t, ξ(t, t0, x))
= f(t, ν(t, 1)) − f(t, ν(t, 0))

=
∫ 1

0
Jxf(t, ν(t, θ)) ∂θν(t, θ) dθ

=
(∫ 1

0
Jxf(t, ν(t, θ)) dθ

)
(ξ(t, t0, x̄) − ξ(t, t0, x))

for all t ≥ t0, except on a set of measure zero where ξ(t, t0, x̄) − ξ(t, t0, x) is not continuously differentiable
in t (see, e.g., [50, Sec. 4.2.4] for a more rigorous justification). Hence, the difference ξ(t, t0, x̄) − ξ(t, t0, x)
solves the LTV system (8) with A(t) :=

∫ 1
0 Jxf(t, ν(t, θ)) dθ and initial state x̄ − x at t0.

Next, we write A(t) = [Aij(t)] ∈ Rn×n with Aij(t) :=
∫ 1

0 Jxj
fi(t, ν(t, θ)) dθ ∈ Rni×nj for i, j ∈

{1, . . . , m}. Then the difference (ξ1(t, t0, x̄) − ξ1(t, t0, x), . . . , ξm(t, t0, x̄) − ξm(t, t0, x)) solves the cor-
responding interconnected LTV system (49) with initial state (x̄1 − x1, . . . , x̄m − xm) at t0. By (51), we
have  |ξ1(t, t0, x̄) − ξ1(t, t0, x)|1

...
|ξm(t, t0, x̄) − ξm(t, t0, x)|m

 ≤ eĀlin
N (t,t0)(t−t0)

 |x̄1 − x1|1
...

|x̄m − xm|m

 ∀ t ≥ t0,

where the matrix-valued function Ālin
N (t, t0) = [ālin

ij (t, t0)] ∈ Rm×m is defined in (50).
Finally, we compare Ālin

N (t, t0) to the matrix-valued function ĀN(t, t0, K) = [āij(t, t0, K)] ∈ Rm×m

defined in (38). For all t ≥ t0, as the matrix measures µi(·) and induced norms ∥ · ∥ij are convex functions
and ν(t, θ) ∈ co(ξ(t, t0, K)) for all θ ∈ [0, 1], we have

ālin
ii (t, t0) = max

s∈[t0,t]
µi

(∫ 1

0
Jxi

fi(s, ν(s, θ)) dθ

)
≤ max

s∈[t0,t]

∫ 1

0
µi(Jxi

fi(s, ν(s, θ))) dθ ≤ max
s∈[t0,t]

max
θ∈[0,1]

aii(s, ν(s, θ)) ≤ āii(t, t0, K),

ālin
ij (t, t0) = max

s∈[t0,t]

∥∥∥∥∫ 1

0
Jxj

fi(s, ν(s, θ)) dθ

∥∥∥∥
ij

≤ max
s∈[t0,t]

∫ 1

0
∥Jxj

fi(s, ν(s, θ))∥ij dθ ≤ max
s∈[t0,t]

max
θ∈[0,1]

aij(s, ν(s, θ)) ≤ āij(t, t0, K)

for all i, j ∈ {1, . . . , m} with i ̸= j. Therefore, Ālin
N (t, t0) ≤ ĀN(t, t0, K), and (39) follows.

A.3 Proof of Lemma 8

According to [43, Th. 7, p. 24], for each v ∈ Rn, the Jacobian matrix Jxξ(t, t0, v) is equal to the state-
transition matrix ΦA(t, t0) of the LTV system (8) with the matrix-valued function A(t) := Jxf(t, ξ(t, t0, v)).
By Liouville’s formula (see, e.g., [51, Th. 4.1, p. 28]), its determinant satisfies

det(Jxξ(t, t0, v)) = e

∫ t

t0
tr(Jxf(s,ξ(s,t0,v))) ds ∀ t ≥ t0.
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Therefore,

vol(ξ(t, t0, K)) =
∫

K
| det(Jxξ(t, t0, v))| dv ≥

(
min
v∈K

| det(Jxξ(t, t0, v))|
)

vol(K)

≥
(

min
v∈K

e

∫ t

t0
tr(Jxf(s,ξ(s,t0,v))) ds

)
vol(K) = eγ(t,t0) vol(K)

for all t ≥ t0, that is, (40) holds.

A.4 Proof of Lemma 9

If (43) holds, then
K ⊂

⋃
x∈G(θ)

(R(x) ∩ K) ⊂
⋃

x∈G(θ)
Bf,t0(x, ε, T ).

Hence, G(θ) is a (T, ε)-spanning set.
As K is a compact set with nonempty interior, there exists a closed hypercube B of radius r > 0 such

that K ⊂ B. Then the cardinality of G(θ) is upper bounded by

#G(θ) ≤
n∏

i=1

(⌊2r

θi

⌋
+ 1

)
.

Consequently, the minimal cardinality of a (T, ε)-spanning set satisfies

S(f, t0, ε, T, K) ≤ #G(θ) ≤
n∏

i=1

(⌊2r

θi

⌋
+ 1

)
≤

n∏
i=1

(2r

θi
+ 1

)
.

If (43) holds for all T ≥ 0 and ε > 0, then the definition of entropy (4) implies that

h(f, t0, K) ≤ lim sup
ε↘0

lim sup
T →∞

n∑
i=1

log(2r/θi + 1)
T

≤ lim sup
ε↘0

lim sup
T →∞

n∑
i=1

log(1/θi)
T

+
n∑

i=1
lim sup

ε↘0
lim sup

T →∞

log(θi + 2r)
T

, (52)

where the last inequality holds as the upper limit is a subadditive function. Moreover, each summand in the
last term of (52) satisfies

lim sup
ε↘0

lim sup
T →∞

log(θi + 2r)
T

≤ lim sup
ε↘0

lim sup
T →∞

max{log(2θi), log(4r)}
T

= max
{

lim sup
ε↘0

lim sup
T →∞

log θi

T
, 0
}

,

where the equality holds in part because r is independent of T . Therefore, (52) implies (45) under the
condition (44).

A.5 Proof of Lemma 10

If (46) holds, then for all distinct points x, x̄ ∈ G(θ) ⊂ K, we have x̄ /∈ Bf,t0(x, ε, T ) as x̄ /∈ R(x). Hence,
G(θ) is a (T, ε)-separated set.
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As K is a compact set with nonempty interior, there exists a closed hypercube B̄ of radius r̄ > 0 such
that B̄ ⊂ K. Then the cardinality of G(θ) is lower bounded by

#G(θ) ≥
n∏

i=1
max

{⌊2r̄

θi

⌋
, 1
}

.

Consequently, the maximal cardinality of a (T, ε)-separated set satisfies

N(f, t0, ε, T, K) ≥ #G(θ) ≥
n∏

i=1
max

{⌊2r̄

θi

⌋
, 1
}

≥
n∏

i=1
max

{2r̄

θi
− 1, 1

}
.

If (46) holds for all T ≥ 0 and ε > 0, then the alternative definition of entropy (5) implies that

h(f, t0, K) ≥ lim inf
ε↘0

lim sup
T →∞

n∑
i=1

log(max{2r̄/θi − 1, 1})
T

≥ lim inf
ε↘0

lim sup
T →∞

n∑
i=1

log(1/θi)
T

+
n∑

i=1
lim inf

ε↘0
lim inf
T →∞

log(max{2r̄ − θi, θi})
T

, (53)

where the last equality holds as the lower limit is a superadditive function, and for two arbitrary functions
g, ḡ : R≥0 → R, we have

lim sup
T →∞

(g(T ) + ḡ(T )) ≥ lim sup
T →∞

g(T ) + lim inf
T →∞

ḡ(T ).

Moreover, each summand in the last term in (53) satisfies

lim inf
ε↘0

lim inf
T →∞

log(max{2r̄ − θi, θi})
T

≥ lim inf
ε↘0

lim inf
T →∞

log(max{r̄, θi})
T

≥ lim inf
ε↘0

lim inf
T →∞

log r̄

T
= 0,

where the equality holds as r̄ is independent of T . Therefore, (47) follows from (53).

B Proof sketches of Propositions 2 and 3

First, the proof of Proposition 3 is analogous to that of Theorem 2. The main difference lies in the construction
of bounds on the separation between trajectories. To establish Proposition 3, we apply variational arguments
to the line segment connecting two initial states, rather than the one connecting two solutions as in the proof
of Lemma 7. This leads to the following lemma. The proof is provided in Appendix C.3.

Lemma 13. For the interconnection matrix function AN(t, x) = [aij(t, x)] ∈ Rm×m defined in (25),
consider the matrix-valued function Āini

N (t, t0, K) = [āini
ij (t, t0, K)] ∈ Rm×m defined by

āini
ij (t, t0, K) := max

s∈[t0,t]
max

v∈co(K)
aij(s, ξ(s, t0, v)), i, j ∈ {1, . . . , m}. (54)

For all initial states x = (x1, . . . , xm), x̄ = (x̄1, . . . , x̄m) ∈ K with xi, x̄i ∈ Rni for all i, the solutions of
the interconnected system (20) satisfy |ξ1(t, t0, x̄) − ξ1(t, t0, x)|1

...
|ξm(t, t0, x̄) − ξm(t, t0, x)|m

 ≤ eĀini
N (t,t0,K)(t−t0)

 |x̄1 − x1|1
...

|x̄m − xm|m

 ∀ t ≥ t0. (55)
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Applying Lemma 13 in place of Lemma 7 yields the condition (32) for constants ā∗
ij in Proposition 3, in

contrast to the condition (28) for constants âij in Theorem 2.
Second, the proof of Proposition 2 is analogous to that of Theorem 2 with m = 1. As in the proof sketch

of Proposition 3 above, the main difference lies in the construction of bounds on the separation between
trajectories. In addition to the different application of variational arguments, we use Coppel’s inequality
(see, e.g., [45, Th. 2.5.3, p. 47]) instead of Lemma 12. This leads to the following lemma. The proof is
provided in Appendix C.1.

Lemma 14. For all initial states x, x̄ ∈ K, the solutions of the system (1) satisfy

|ξ(t, t0, x̄) − ξ(t, t0, x)| ≤ eηini(t,t0,K)|x̄ − x| ∀ t ≥ t0 (56)

with
ηini(t, t0, K) := max

v∈co(K)

∫ t

t0
µ(Jxf(s, ξ(s, t0, v))) ds. (57)

Applying Lemma 14 in place of Lemma 7 yields the constant µ̂∗ defined in (31) in Proposition 2, in
contrast to the constant µ̂ defined in (11) in Theorem 1.

Details of the proofs of Propositions 2 and 3 are provided in Appendix C.

C Proof details of Proposition 2 and 3

C.1 Proof of Lemma 14

Lemma 14 provides an upper bound on the separation between trajectories for the system (1).

Proof of Lemma 14. According to [43, Th. 7, p. 24], for each v ∈ Rn, the Jacobian matrix Jxξ(t, t0, v)
is equal to the state-transition matrix ΦA(t, t0) of the LTV system (8) with the matrix-valued function
A(t) := Jxf(t, ξ(t, t0, v)). Fix arbitrary initial states x, x̄ ∈ K, and define

ν(t, θ) := ξ(t, t0, θx̄ + (1 − θ)x), t ≥ t0, θ ∈ [0, 1].

Then the derivative ∂θν(t, θ) = Jxξ(t, t0, θx̄ + (1 − θ)x)(x̄ − x) solves (8) with A(t) := Jxf(t, ν(t, θ))
and initial state x̄ − x at t0. Hence, Coppel’s inequality (see, e.g., [45, Th. 3, p. 47]) implies that

|∂θν(t, θ)| ≤ e

∫ t

t0
µ(Jxf(s,ν(s,θ))) ds|x̄ − x| ∀ t ≥ t0.

For all t ≥ t0, as ν(t, θ) ∈ ξ(t, t0, co(K)) for all θ ∈ [0, 1], we have |∂θν(t, θ)| ≤ eηini(t,t0,K)|x̄ − x|, and
thus

|ξ(t, t0, x̄) − ξ(t, t0, x)| = |ν(t, 1) − ν(t, 0)| ≤
∫ 1

0
|∂θν(t, θ))| dθ ≤ eηini(t,t0,K)|x̄ − x|,

that is, (56) holds.

We also provide a lower bound on the separation between trajectories for the system (1), which can
potentially be used to construct separated sets and derive lower bounds on topological entropy. The proof is
analogous to that of Lemma 14.

Lemma 15. For all initial states x, x̄ ∈ K, the solutions of the system (1) satisfy

|ξ(t, t0, x̄) − ξ(t, t0, x)| ≥ eη̄ini(t,t0,K)|x̄ − x| ∀ t ≥ t0 (58)

with
η̄ini(t, t0, K) := min

v∈co(K)

∫ t

t0
−µ(−Jxf(s, ξ(s, t0, v))) ds.
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Proof. According to [43, Th. 7, p. 24], for each v ∈ Rn, the Jacobian matrix Jxξ(t, t0, v) is equal to the state-
transition matrix ΦA(t, t0) of the LTV system (8) with the matrix-valued function A(t) := Jxf(t, ξ(t, t0, v)).
Fix arbitrary initial states x, x̄ ∈ K, and define

ν(t, θ) := ξ(t, t0, θx̄ + (1 − θ)x), t ≥ t0, θ ∈ [0, 1].

Then the derivative ∂θν(t, θ) = Jxξ(t, t0, θx̄ + (1 − θ)x)(x̄ − x) solves (8) with A(t) := Jxf(t, ν(t, θ))
and initial state x̄ − x at t0. Hence, Coppel’s inequality (see, e.g., [45, Th. 3, p. 47]) implies that

|∂θν(t, θ)| ≥ e

∫ t

t0
−µ(−Jxf(s,ν(s,θ))) ds|x̄ − x| ∀ t ≥ t0.

For all t ≥ t0, as ν(t, θ) ∈ ξ(t, t0, co(K)) for all θ ∈ [0, 1], we have |∂θν(t, θ)| ≥ eη̄ini(t,t0,K)|x̄ − x|, and
thus

|ξ(t, t0, x̄) − ξ(t, t0, x)| = |ν(t, 1) − ν(t, 0)| ≥
∫ 1

0
|∂θν(t, θ))| dθ ≥ eη̄ini(t,t0,K)|x̄ − x|,

that is, (58) holds.

C.2 Proof of Proposition 2

We begin by deriving an intermediate upper bound on entropy.

Lemma 16. The topological entropy of the system (1) is upper bounded by

h(f, t0, K) ≤ lim sup
T →∞

n

T
max

t∈[t0,t0+T ]
ηini(t, t0, K), (59)

where the function ηini(t, t0, K) is defined in (57).

Proof. By the equivalence of norms on finite-dimensional vector spaces, there exist a constant r > 0 such
that

|v| ≤ r|v|∞ ∀ v ∈ Rn

for the given norm | · |. Consider arbitrary initial states x, x̄ ∈ K. By applying the separation bound in (56),
we obtain

|ξ(t, t0, x̄) − ξ(t, t0, x)| ≤ eηini(t,t0,K)|x̄ − x| ≤ eηini(t,t0,K)r|x̄ − x|∞

for all t ≥ t0. Therefore, for arbitrary T ≥ 0 and ε > 0, we have

max
t∈[t0,t0+T ]

|ξ(t, t0, x̄) − ξ(t, t0, x)| ≤ max
t∈[t0,t0+T ]

eηini(t,t0,K)r|x̄ − x|∞.

Consider the grid G(θ) defined in (41) with the vector θ = (θ1, . . . , θn) ∈ Rn
>0, where

θi := ε

/(
r max

t∈[t0,t0+T ]
eηini(t,t0,K)

)
, i ∈ {1, . . . , n}.

By comparing the corresponding hyperrectangles R(x) defined in (42) to the open balls Bf,t0(x, ε, T )
defined in (2), we obtain (R(x) ∩ K) ⊂ Bf,t0(x, ε, T ) for all x ∈ G(θ). Then Lemma 9 implies that G(θ)
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is (T, ε)-spanning. Moreover, the upper bound on entropy in (45) holds as T ≥ 0 and ε > 0 are arbitrary
and θi are nonincreasing in T . Therefore,

h(f, t0, K) ≤ lim sup
ε↘0

lim sup
T →∞

n∑
i=1

log(1/θi)
T

= lim sup
T →∞

n

T
max

t∈[t0,t0+T ]
ηini(t, t0, K) + lim

ε↘0
lim

T →∞

n log(r/ε)
T

,

where C := n log(r/ε) is independent of T and thus satisfies C/T → 0 as T → ∞. Hence, we conclude
that the entropy h(f, t0, K) satisfies the upper bound in (59).

We now establish the upper bound on entropy in (30).

Proof of Proposition 2. Consider an arbitrary δ1 > 0. First, by the definition of the infimum in (31), there
exists a sufficiently large t1 ≥ t0 such that

lim sup
t→∞

max
v∈co(ξ(t1,t0,K))

µ(Jxf(t, ξ(t, t1, v))) ≤ µ̂∗ + δ1.

Next, by the definition of the upper limit in (31), there exists a sufficiently large t2 ≥ t1 such that

max
v∈co(ξ(t1,t0,K))

µini(Jxf(t, ξ(t, t1, v))) ≤ µ̂∗ + 2δ1 ∀ t ≥ t2.

By Lemma 3, we have h(f, t0, K) = h(f, t1, ξ(t1, t0, K)). Then applying Lemma 16 with the new
initial time t1 yields

h(f, t1, ξ(t1, t0, K)) ≤ lim sup
T →∞

n

T
max

t∈[t1,t1+T ]
ηini(t, t1, ξ(t1, t0, K)).

For all t ≥ t2, we have

ηini(t, t1, ξ(t1, t0, K)) = max
v∈co(ξ(t1,t0,K))

∫ t

t1
µ(Jxf(s, ξ(s, t1, v))) ds

≤ ηini(t2, t1, ξ(t1, t0, K)) + max
v∈co(ξ(t1,t0,K))

∫ t

t2
µ(Jxf(s, ξ(s, t1, v))) ds

≤ ηini(t2, t1, ξ(t1, t0, K)) + (µ̂∗ + 2δ1)(t − t2).

Consequently,

max
t∈[t1,t1+T ]

ηini(t, t1, ξ(t1, t0, K)) ≤ Ct1,t2 + max{(µ̂∗ + 2δ1)(t1 + T − t2), 0} ∀ T ≥ 0,

where Ct1,t2 := maxt∈[t1,t2] ηini(t, t1, ξ(t1, t0, K)) is independent of T and thus satisfies Ct1,t2/T → 0 as
T → ∞. Therefore,

h(f, t0, K) ≤ lim sup
T →∞

n

T
max

t∈[t1,t1+T ]
ηini(t, t1, ξ(t1, t0, K))

≤ lim sup
T →∞

n max{(µ̂∗ + 2δ1)(t1 + T − t2), 0}
T

+ lim
T →∞

nCt1,t2

T

≤ n max
{

µ̂∗ + 2δ1 + lim
T →∞

(µ̂∗ + 2δ2)(t1 − t2)
T

, 0
}

≤ n max{µ̂∗ + 2δ1, 0}.

As δ1 > 0 is arbitrary, we conclude that the entropy h(f, t0, K) satisfies that upper bound in (30).
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C.3 Proof of Lemma 13

Lemma 13 provides an upper bound on the separation between trajectories for the interconnected system
(20).

Proof of Lemma 13. We prove Lemma 13 by constructing an LTV system (8) with a suitable matrix-valued
function A(t), using variational arguments from nonlinear systems analysis (see, e.g., [43, Sec. 1.3]). We
then reformulate it as the interconnected LTV system (49) and apply Lemma 12.

According to [43, Th. 7, p. 24], for each v ∈ Rn, the Jacobian matrix Jxξ(t, t0, v) is equal to the state-
transition matrix ΦA(t, t0) of the LTV system (8) with the matrix-valued function A(t) := Jxf(t, ξ(t, t0, v)).
Fix arbitrary initial states x, x̄ ∈ K with xi, x̄i ∈ Rni for all i, and define

ν(t, θ) := ξ(t, t0, θx̄ + (1 − θ)x), t ≥ t0, θ ∈ [0, 1].

Then the derivative ∂θν(t, θ) = Jxξ(t, t0, θx̄ + (1 − θ)x)(x̄ − x) solves (8) with A(t) := Jxf(t, ν(t, θ))
and initial state x̄ − x at t0.

Next, we write ν(t, θ) = (ν1(t, θ), . . . , νm(t, θ)) ∈ Rn with νi(t, θ) := ξi(t, t0, θx̄ + (1 − θ)x) ∈ Rni

and A(t) = [Aij(t)] ∈ Rn×n with Aij(t) := Jxj
fi(t, ν(t, θ)) ∈ Rni×nj for i, j ∈ {1, . . . , m}. Then

(∂θν1(t, θ), . . . , ∂θνm(t, θ)) solves the corresponding interconnected LTV system (49) with initial state
(x̄1 − x1, . . . , x̄m − xm) at t0. By (51), we have |∂θν1(t, θ)|1

...
|∂θνm(t, θ)|m

 ≤ eĀlin
N (t,t0)(t−t0)

 |x̄1 − x1|1
...

|x̄m − xm|m

 ∀ t ≥ t0,

where the matrix-valued function Ālin
N (t, t0) ∈ Rm×m is defined in (50).

Finally, we compare Ālin
N (t, t0) to the matrix-valued function Āini

N (t, t0, K) defined in (54). For all
t ≥ t0, as ν(t, θ) ∈ ξ(t, t0, co(K)) for all θ ∈ [0, 1], we have

ālin
ii (t, t0) = max

s∈[t0,t]
µi

(
Jxi

fi(s, ν(s, θ))
)

≤ max
s∈[t0,t]

max
v∈ξ(s,t0,co(K))

aii(s, v) = āii(t, t0, K),

ālin
ij (t, t0) = max

s∈[t0,t]

∥∥∥Jxj
fi(s, ν(s, θ))

∥∥∥
ij

≤ max
s∈[t0,t]

max
v∈ξ(s,t0,co(K))

aij(s, v)) = āij(t, t0, K)

for all i, j ∈ {1, . . . , m} with i ̸= j. Then Ālin
N (t, t0) ≤ Āini

N (t, t0, K), and since both matrices are Metzler,
we have 0 ≤ eĀlin

N (t,t0)(t−t0) ≤ eĀini
N (t,t0,K)(t−t0). As Āini

N (t, t0, K) is independent of θ, we have |ξ1(t, t0, x̄) − ξ1(t, t0, x)|1
...

|ξm(t, t0, x̄) − ξm(t, t0, x)|m

 =

 |ν1(t, 1) − ν1(t, 0)|1
...

|νm(t, 1) − νm(t, 0)|m



≤


∫ 1

0 |∂θν1(t, θ)|1 dθ
...∫ 1

0 |∂θνm(t, θ)|m dθ

 ≤ eĀini
N (t,t0,K)(t−t0)

 |x̄1 − x1|1
...

|x̄m − xm|m

,

that is, (55) holds.

C.4 Proof of Proposition 3

We begin by deriving an intermediate upper bound on entropy. The proof is identical to that of Lemma 11,
except with Āini

N (t, t0, K) replacing ĀN(t, t0, K).

26



Lemma 17. The topological entropy of the interconnected system (20) is upper bounded by

h(f, t0, K) ≤ lim sup
T →∞

n

T
max

t∈[t0,t0+T ]
log ∥eĀini

N (t,t0,K)(t−t0)∥N, (60)

where the matrix-valued function Āini
N (t, t0, K) is defined in (54).

Proof. Consider arbitrary initial states x = (x1, . . . , xm), x̄ = (x̄1, . . . , x̄m) ∈ K with xi, x̄i ∈ Rni for all
i. By applying the componentwise separation bound in (55), together with the definition of the “global”
norm | · |G in (21), and using the monotonicity of the “network” norm | · |N, we obtain

|ξ(t, t0, x̄) − ξ(t, t0, x)|G =

∣∣∣∣∣∣∣
 |ξ1(t, t0, x̄) − ξ1(t, t0, x)|1

...
|ξm(t, t0, x̄) − ξm(t, t0, x)|m


∣∣∣∣∣∣∣
N

≤

∣∣∣∣∣∣∣eĀini
N (t,t0,K)(t−t0)

 |x̄1 − x1|1
...

|x̄m − xm|m


∣∣∣∣∣∣∣
N

≤ ∥eĀini
N (t,t0,K)(t−t0)∥N

∣∣∣∣∣∣∣
 |x̄1 − x1|1

...
|x̄m − xm|m


∣∣∣∣∣∣∣
N

for all t ≥ t0. By the equivalence of norms on finite-dimensional vector spaces, there exist constants
r1, . . . , rm, rN > 0 such that

|vi|i ≤ ri|vi|∞ ∀ i ∈ {1, . . . , m}, vi ∈ Rni

for the “local” norms | · |i, and
|v|N ≤ rN|v|∞ ∀ v ∈ Rm

for the “network” norm | · |N. Consequently,

|ξ(t, t0, x̄) − ξ(t, t0, x)|G ≤ ∥eĀini
N (t,t0,K)(t−t0)∥NrN max

1≤i≤m
|x̄i − xi|i

≤ ∥eĀini
N (t,t0,K)(t−t0)∥NrN max

1≤i≤m
ri|x̄i − xi|∞

for all t ≥ t0. Therefore, for arbitrary T ≥ 0 and ε > 0, we have

max
t∈[t0,t0+T ]

|ξ(t, t0, x̄) − ξ(t, t0, x)|G ≤ max
1≤i≤m

(
max

t∈[t0,t0+T ]
∥eĀini

N (t,t0,K)(t−t0)∥N

)
rNri|x̄i − xi|∞.

Consider the grid G(θ) defined by (41) with the vector θ = (θ̄11n1 , . . . , θ̄m1nm) ∈ Rn
>0, where

θ̄i := ε

/(
rNri max

t∈[t0,t0+T ]
∥eĀini

N (t,t0,K)(t−t0)∥N

)
, i ∈ {1, . . . , m}

and 1ni denotes the vector of ones in Rni . By comparing the corresponding hyperrectangles R(x) defined
in (42) to the open balls Bf,t0(x, ε, T ) defined in (2) with the “global” norm | · |G, we obtain (R(x) ∩ K) ⊂
Bf,t0(x, ε, T ) for all x ∈ G(θ). Then Lemma 9 implies that G(θ) is a (T, ε)-spanning set. Moreover, the
upper bound on entropy in (45) holds as T ≥ 0 and ε > 0 are arbitrary and all θi are nonincreasing in T .
Therefore,

h(f, t0, K) ≤ lim sup
ε↘0

lim sup
T →∞

m∑
i=1

ni log(1/θ̄i)
T

= lim sup
T →∞

m∑
i=1

ni

T
max

t∈[t0,t0+T ]
log ∥eĀini

N (t,t0,K)(t−t0)∥N + lim
ε↘0

lim
T →∞

C

T
,

where C :=
∑m

i=1 ni log(rNri/ε) is independent of T and thus satisfies C/T → 0 as T → ∞. As
n1 + · · · + nm = n, we conclude that the entropy h(f, t0, K) satisfies the upper bound in (60).
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We now establish the upper bound on entropy in (33). The proof is analogous to that of Theorem 2 in
Section 6.3. The main difference is that the convex hull is taken at a new initial time t1 instead of t, which
is due to the different application of variation arguments in Lemmas 13 and 7.

Proof of Proposition 3. By the definition of the infimum in (32), for each δ1 > 0, there exists a sufficiently
large t1 ≥ t0 such that

sup
t≥t1

max
v∈co(ξ(t1,t0,K))

aij(t, ξ(t, t1, v)) ≤ ā∗
ij + δ1 ∀ i, j ∈ {1, . . . , m},

that is, the matrix-valued function Āini
N (t, t0, K) defined in (54) satisfies

Āini
N (t, t1, ξ(t1, t0, K)) ≤ Ā∗

N + δ11 ∀ t ≥ t1,

where 1 denotes the matrix of ones in Rm×m.
By Lemma 3, we have h(f, t0, K) = h(f, t1, ξ(t1, t0, K)). Then applying Lemma 17 with the new

initial time t1 and initial set ξ(t1, t0, K) yields

h(f, t1, ξ(t1, t0, K)) ≤ lim sup
T →∞

n

T
max

t∈[t1,t1+T ]
log ∥eĀini

N (t,t1,ξ(t1,t0,K))(t−t1)∥N.

Moreover, as Āini
N (t, t1, ξ(t1, t0, K)) and Ā∗

N + δ11 are both Metzler matrices, the monotonicity property in
(23) implies that

∥eĀini
N (t,t1,ξ(t1,t0,K))(t−t1)∥N ≤ ∥e(Ā∗

N+δ11)(t−t1)∥N

≤ ∥eĀ∗
N(t−t1)∥N∥eδ11(t−t1)∥N ≤ ∥eĀ∗

N(t−t1)∥Neδ1∥1∥N(t−t1)

for all t ≥ t1. Therefore,

h(f, t0, K) ≤ lim sup
T →∞

n

T
max

t∈[t1,t1+T ]

(
log ∥eĀ∗

N(t−t1)∥N + δ1∥1∥N(t − t1)
)

≤ lim sup
T →∞

n

T
max

t∈[0,T ]
log ∥eĀ∗

Nt∥N + nδ1∥1∥N.

As δ1 > 0 is arbitrary, we have

h(f, t0, K) ≤ lim sup
T →∞

n

T
max

t∈[0,T ]
log ∥eĀ∗

Nt∥N.

According to [44, Fact 11.15.7, p. 690], as Ā∗
N is a Metzler matrix, its eigenvalue with the largest real

part λmax(Ā∗
N) satisfies

λmax(Ā∗
N) = lim

t→∞

1
t

log ∥eĀ∗
Nt∥N.

Hence, for each δ2 > 0, there exists a sufficiently large t2 ≥ 0 such that

log ∥eĀ∗
Nt∥N ≤ (λmax(Ā∗

N) + δ2) t ∀ t ≥ t2.

Consequently,
1
T

max
t∈[0,T ]

log ∥eĀ∗
Nt∥N ≤ max

{
λmax(Ā∗

N) + δ2,
Ct2

T

}
∀ T ≥ 0,

where Ct2 := maxt∈[0,t2] log ∥eĀ∗
Nt∥N is independent of T and thus satisfies Ct2/T → 0 as T → ∞.

Therefore,

h(f, t0, K) ≤ lim sup
T →∞

n

T
max

t∈[0,T ]
log ∥eĀ∗

Nt∥N

≤ n max{λmax(Ā∗
N) + δ2, 0}.

As δ2 > 0 is arbitrary, we conclude that the entropy h(f, t0, K) satisfies the upper bound in (33).
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