Modeling and Mitigating the Coremelt Attack

Guosong Yang1, Hossein Hosseini2, Dinuka Sahabandu2, Andrew Clark3, João Hespanha1, and Radha Poovendran2

1Department of Electrical and Computer Engineering, University of California, Santa Barbara
2Department of Electrical Engineering, University of Washington
3Department of Electrical and Computer Engineering, Worcester Polytechnic Institute

2018 American Control Conference
Introduction

- The Coremelt attack on a TCP network with the “dumbbell” topology

Contribution

- A dynamical system model for analysis
- A limited number of subverted machines (bots): a modified TCP algorithm
- A flow-based mitigation method
- Simulation results
Distributed denial of service (DDoS) attack

- Attempt to disrupt network service by sending superfluous traffics from a vast number of bots
Distributed denial of service (DDoS) attack

- Attempt to disrupt network service by sending superfluous traffics from a vast number of bots
- Soaring number of Internet of Things (IoT) \Rightarrow Escalating DDoS threats
 - 21 billion IoT devices by 2020
Distributed denial of service (DDoS) attack

- Attempt to disrupt network service by sending superfluous traffics from a vast number of bots
- Soaring number of Internet of Things (IoT) → Escalating DDoS threats
 - 21 billion IoT devices by 2020
- One of world’s largest DDoS attack to date [Ant+17]
 - 2016 on OVH (hosting service in France)
 - Mirai Botnet: 150,000 hacked IoT devices, 600,000 at peak
 - Attack flow rate: 1 Tbps

The Coremelt attack

- A link-flooding DDoS attack [SP11]
- Target: backbone link

The Coremelt attack

- A link-flooding DDoS attack [SP11]
- Target: backbone link
- Distributed botnet
 - Available
 - Mirai Botnet: 150k bots, 600k at peak
 - Among M bots there are $O(M^2)$ connections
 - Affordable
 - Price per 1000 bots: $100–$180 in U.S. or U.K., $20–$60 in Europe, less than $10 elsewhere

The Coremelt attack

- A link-flooding DDoS attack [SP11]
- Target: backbone link
- Distributed botnet
 - Available
 - Mirai Botnet: 150k bots, 600k at peak
 - Among M bots there are $O(M^2)$ connections
 - Affordable
 - Price per 1000 bots: $100–$180 in U.S. or U.K., $20–$60 in Europe, less than $10 elsewhere
- Low-intensity, legitimate-looking traffic
 - Able to evade conventional DDoS defenses

Transmission Control Protocol (TCP)

- A congestion control algorithm [Pos81]
 - One congestion window per round-trip time (RTT)
 - Detect congestion based on missing acknowledgements (ACKs)
 - Additive-increase/multiplicative-decrease (AIMD) feedback algorithm [CJ89]

Transmission Control Protocol (TCP)

- A congestion control algorithm [Pos81]
 - One congestion window per round-trip time (RTT)
 - Detect congestion based on missing acknowledgements (ACKs)
 - Additive-increase/multiplicative-decrease (AIMD) feedback algorithm [CJ89]

- TCP-NewReno [Hen+12]
 - Widely used in modern Internet
 - Better for bursts of packet drops

Dynamical system model

- Analyze the impact and effectiveness of the Coremelt attack
- Establish flow composition and convergence via Lyapunov-based analysis
- Understand the relations between the number of bots, packet drop probability, and link usage ratio of users
- Develop a flow-based mitigation method
Network model

TCP-NewReno source

- One congestion window w_k per RTT τ_k
- Average flow rate $x_k = w_k / \tau_k$
- Congestion probability $q_k \approx w_k p$ with packet drop probability p
Network model

TCP-NewReno source

- One congestion window \(w_k \) per RTT \(\tau_k \)
- Average flow rate \(x_k = w_k / \tau_k \)
- Congestion probability \(q_k \approx w_k p \) with packet drop probability \(p \)
- AIMD algorithm for TCP-NewReno

\[
\begin{cases}
 w_k \leftarrow w_k + 1, & \text{without congestion;} \\
 w_k \leftarrow w_k / 2, & \text{with congestion}
\end{cases}
\]
Network model

TCP-NewReno source

- One congestion window w_k per RTT τ_k
- Average flow rate $x_k = w_k / \tau_k$
- Congestion probability $q_k \approx w_k p$ with packet drop probability p
- AIMD algorithm for TCP-NewReno
 \[
 \begin{cases}
 w_k \leftarrow w_k + 1, & \text{without congestion;} \\
 w_k \leftarrow w_k / 2, & \text{with congestion}
 \end{cases}
 \]
- Dynamical system model:
 \[
 \dot{x}_k = \frac{1}{\tau_k^2}\left((1 - q_k) - \frac{w_k}{2} q_k\right)
 \]
Network model

TCP-NewReno source

\[\dot{x}_k = \frac{1 - \tau_k x_k p}{\tau_k^2} - \frac{p x_k^2}{2}, \quad k = 1, \ldots, N \]
Network model

TCP-NewReno source

\[\dot{x}_k = \frac{1 - \tau_k x_k p}{\tau_k^2} - \frac{p x_k^2}{2}, \quad k = 1, \ldots, N \]

Bottleneck link

- Aggregate rate \(y = \sum x_k \)
- Bandwidth \(C \)
- Drop the excess packets

\[p = \begin{cases} 1 - C/y, & \text{if } y > C; \\ 0, & \text{otherwise} \end{cases} \]
Analysis

Attack with M bots following TCP-NewReno

If M bots and $N-M$ users all follow TCP-NewReno, the dynamical system is globally asymptotically stable (GAS). Packet drop probability converge to p^* satisfying

$$\sum_{k=1}^{N} 1/\tau_k = \sqrt{1+2/p^*+1-2p^*} C$$

Proof

Lyapunov function $V(x-x^*)$ such that

$$\dot{V}(x-x^*) \leq -W(x-x^*) - (p-p^*)(y-y^*)$$

Packet drop probability p is increasing in aggregate rate y.

Yang et al. (UCSB, UW, WPI)
Coremelt
ACC2018
Attack with M bots following TCP-NewReno

Theorem 1

- If M bots and $N - M$ users all follow TCP-NewReno, the dynamical system is globally asymptotically stable (GAS).

- Packet drop probability converge to p^* satisfying

$$\sum_{k=1}^{N} \frac{1}{\tau_k} = \frac{\sqrt{1+2/p^*+1}}{2(1-p^*)} p^* C$$
Analysis

Attack with M bots following TCP-NewReno

Theorem 1

- If M bots and $N - M$ users all follow TCP-NewReno, the dynamical system is globally asymptotically stable (GAS)

- Packet drop probability converge to p^* satisfying

$$\sum_{k=1}^{N} \frac{1}{\tau_k} = \frac{\sqrt{1+2/p^*+1}}{2(1-p^*)} p^* C$$

Proof

- Lyapunov function $V(x - x^*)$ such that

$$\dot{V}(x - x^*) \leq -W(x - x^*) - (p - p^*)(y - y^*)$$

- $W(x - x^*)$ is positive definite

- Packet drop probability p is increasing in aggregate rate y
Analysis

Attack with M **bots following** TCP-NewReno

![Diagram of network flow](image)

Theorem 1

- If M bots and $N - M$ users all follow TCP-NewReno, the dynamical system is globally asymptotically stable (GAS)

- Packet drop probability converge to p^* satisfying

\[
\sum_{k=1}^{N} \frac{1}{\tau_k} = \frac{\sqrt{1+2/p^*+1} + 1}{2(1-p^*)} p^* C
\]

Implication

- For the same RTT τ, the link usage ratio of users is $1 - M/N$
Analysis

Attack with M bots following TCP-NewReno

- **Theorem 1**
 - If M bots and $N - M$ users all follow TCP-NewReno, the dynamical system is globally asymptotically stable (GAS).
 - Packet drop probability converge to p^* satisfying
 \[
 \sum_{k=1}^{N} \frac{1}{\tau_k} = \frac{\sqrt{1+2/p^*+1}}{2(1-p^*)} \cdot p^* C
 \]

Implication

- For the same RTT τ, the link usage ratio of users is $1 - M/N$.
- A target value p^* can be achieved by enough bots so that
 \[
 N \geq \frac{\sqrt{1+2/p^*+1}}{2(1-p^*)} \cdot p^* \tau C
 \]
Attack with M bots following a modified TCP

\[\dot{\lambda}_j = \gamma_j \xi_j (q_0 - q_j) + \lambda_j \]

\[\text{Link Gateway} \]

\[\text{Link} \]

\[C \]

\[\text{Users} \]

\[x_u \]

\[x_1 \]

\[x_2 \]

\[\xi_1 \]

\[\xi_2 \]
Attack with M bots following a modified TCP

Modified TCP source
- Internal state ξ_j that follows the AIMD algorithm for TCP-NewReno
- Flow rate $x_j = \lambda_j \xi_j$ with gain $\lambda_j \geq 0$
- Drive the congestion probability to target value q_0 by slowly adjusting λ_j:
 \[
 \dot{\lambda}_j = \gamma_j \xi_j (q_0 - q_j)^+ \frac{1}{\lambda_j}
 \]
Attack with M bots following a modified TCP

Theorem 2

- If $N - M$ users follow TCP-NewReno and M bots follow the modified TCP, the dynamical system is GAS
- Congestion probability converge to target value q_0 for any M
Attack with M bots following a modified TCP

Theorem 2

- If $N - M$ users follow TCP-NewReno and M bots follow the modified TCP, the dynamical system is GAS
- Congestion probability converge to target value q_0 for any M

Proof

- Weak Lyapunov function $V(x_u - x_u^*, \xi - \xi^*, \lambda - \lambda^*)$ such that
 $$\dot{V}(x_u - x_u^*, \xi - \xi^*, \lambda - \lambda^*) \leq -W(x_u - x_u^*, \xi - \xi^*) - (p - p^*)(y - y^*)$$
- $W(x_u - x_u^*, \xi - \xi^*)$ is positive definite, p is increasing in y
- LaSalle’s invariance principle
Detection-based mitigation: source authentication, packets inspection

- Less effective against Coremelt:
 - Communication between bot pairs
 - Low-intensity, legitimate-looking traffic
Mitigation

- Detection-based mitigation: source authentication, packets inspection
 - Less effective against Coremelt:
 - Communication between bot pairs
 - Low-intensity, legitimate-looking traffic

- Flow-based mitigation: penalize aggressive sources
 - Monitor source flow rates and assign individual drop probability p_k so that the bandwidth C is evenly shared: $p_k \sim 1 - C/(N x_k)$
Mitigation

- Detection-based mitigation: source authentication, packets inspection
 - Less effective against Coremelt:
 - Communication between bot pairs
 - Low-intensity, legitimate-looking traffic

- Flow-based mitigation: penalize aggressive sources
 - Monitor source flow rates and assign individual drop probability p_k so that the bandwidth C is evenly shared: $p_k \sim 1 - C/(Nx_k)$
 - Advantages:
 - Guaranteed link usage ratio of users: $1 - M/N$
 - Does not require modifying source transmission protocols
Mitigation

- Detection-based mitigation: source authentication, packets inspection
 - Less effective against Coremelt:
 - Communication between bot pairs
 - Low-intensity, legitimate-looking traffic

- Flow-based mitigation: penalize aggressive sources
 - Monitor source flow rates and assign individual drop probability p_k so that the bandwidth C is evenly shared: $p_k \sim 1 - C/(Nx_k)$
 - Advantages:
 - Guaranteed link usage ratio of users: $1 - M/N$
 - Does not require modifying source transmission protocols
 - Limitations:
 - Extra resources needed to monitor source flow rates
 - Users with smaller RTTs will also be penalized
 - No effect against attacks with bots following TCP-NewReno
Simulation: without mitigation

- Network of 2,000 users and 1,000 bots
- Link capacity of 1 million packets per RTT

- Attack with TCP-NewReno: low congestion probability; link usage ratio of users is $\frac{2}{3}$
- Attack with modified TCP: target congestion probability; link usage ratio of users is low
Simulation: with mitigation

- Network of 2000 users and 1000 bots
- Link capacity of 10^6 packets per RTT

- Attack with modified TCP: target congestion probability; link usage ratio of users is high
Conclusion

Contribution

• A dynamical system model for analyzing the Coremelt attack on a TCP network
• A limited number of bots: a modified TCP algorithm
• A flow-based mitigation method
• Simulation results
Conclusion

- Contribution
 - A dynamical system model for analyzing the Coremelt attack on a TCP network
 - A limited number of bots: a modified TCP algorithm
 - A flow-based mitigation method
 - Simulation results

- Future work
 - User Datagram Protocol (UDP) [Pos80]
 - The Crossfire attack [KLG13]

References

Acknowledgements

Office of Naval Research
Science & Technology

NSF

UNIVERSITY OF CALIFORNIA
SANTA BARBARA

W UNIVERSITY of WASHINGTON

WPI

Worcester Polytechnic Institute

Yang et al. (UCSB, UW, WPI)