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Abstract— This paper studies the Coremelt attack, a link-
flooding Distributed Denial of Service attack that exhausts the
bandwidth at a core network link using low-intensity traffic
flows between subverted machines. A dynamical system model
is formulated for analyzing the effect of Coremelt attack on a
single-link Transmission Control Protocol (TCP) network and
developing mitigation methods. For the case with a limited
number of subverted sources, a modified TCP algorithm is
developed for the attackers to achieve a desired congestion level.
A mitigation method is proposed to improve the link usage of
legitimate users when the link is under attack. The network
performance under different attack and mitigation scenarios is
illustrated through simulation results.

I. INTRODUCTION

A major threat to Internet security today is the Distributed
Denial of Service (DDoS) attack, in which an adversary at-
tempts to interrupt legitimate users’ access to certain network
resources by sending superfluous traffics from a vast number
of subverted sources (called a botnet). Since the first incident
of DDoS attack reported by the Computer Incident Advisory
Capability (CIAC) in 1999 [1], many large-scale DDoS at-
tacks have been launched against various infrastructures and
organizations (see, e.g., [2], [3]). Moreover, the frequency
and size of DDoS attacks grows rapidly every year. The 11th
annual Worldwide Infrastructure Security Report (WISR) [4]
from Arbor Network shows that 44% of the service provider
respondents have seen more than 21 DDoS attacks per month
from November 2014 to November 2015, up from 38%
in the previous year; moreover, nearly one-quarter of them
experienced attacks with size over 100 Gbps, whereas 20
percent reported attacks over 50Gbps the year before.

As pointed out in [3], most DDoS attacks exploit one or
both of the following two methods: i) disrupting legitimate
users’ service by exhausting server resources; ii) disrupting
legitimate users’ connectivity by exhausting link bandwidth.
The second method (called link-flooding DDoS) proves to
be particularly effective and stealthy, as it can be executed
without sending traffic to the victims at all. One of the first
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Fig. 1. The Coremelt Attack [5]: a coordinated link-flooding DDoS attack
which allows the flow rate of each subverted source to be kept well below
the detection threshold, yet effectively congests/shuts down a target link in
the intersection of attack flows.

and foremost link-flooding DDoS attacks proposed is the
Coremelt attack [5] shown in Fig. 1, in which an adversary
attempts to congest a core link of the network using low-
intensity traffics between subverted machines (called bots).
The Coremelt attack is of high interest as it allows individual
sources participating in the coordinated attack to keep the
flow rates well below the detection thresholds, yet effectively
exhausts the bandwidth of the target link in the intersection
of attack flows. Moreover, it has been further extended in the
security literature to demonstrate attacks such as the Crossfire
attack [6] that have no known countermeasure.

This paper studies the Coremelt attack proposed in [5] on
a single-link Transmission Control Protocol (TCP) network.
Our goal is to build a dynamical system framework for mod-
eling and developing mitigation methods for the Coremelt
attack. We make the following specific contributions:
• A dynamical system model is formulated for analyzing

the effect of Coremelt attack on a single-link TCP
network. Using this model, stability and convergence
of flow rates are established via Lyapunov analysis.

• For a case with a limited number of subverted sources,
a modified TCP algorithm is developed for the attackers
to achieve a desired congestion level.

• A mitigation method against the Coremelt attack is pro-
posed. With this mitigation, the link usage by legitimate
users remains the same as in the case where all sources
follow the standard TCP, thus increasing the number of
bots the adversary needs to occupy the same bandwidth.

• Simulation results are provided to illustrate different
attack and mitigation scenarios.

This paper is organized as follows: Section II provides
the backgrounds on TCP and Coremelt attack. The network
model and the dynamics of TCP sources are formulated in
Section III. In Section IV, we analyze the effect of the
Coremelt attack using the dynamical system model, and
present a modified TCP algorithm through which a desired
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congestion level can be achieved. Mitigation methods are
discussed in Section V. Simulation results are presented in
Section VI. Section VII concludes the paper.

II. BACKGROUND

Transmission Control Protocol (TCP). TCP is a congestion
control algorithm which defines how to establish a connec-
tion between a source-destination pair and reliably transmit
data over the Internet [7]. A TCP source controls its flow
rate by transmitting one congestion window of packets per
round-trip time (RTT), and avoids congestion by adjusting
the window size based on acknowledgments (ACKs) received
from the destination. The adjustment follows the additive-
increase/multiplicative-decrease (AIMD) feedback control
algorithm [8], which linearly increases the window when
all ACKs are accounted for, and halves it if congestion is
detected through a missing ACK. Many studies have been
devoted to the development of dynamical system models for
TCP (see, e.g, [9] and references therein). In this paper, we
consider TCP-NewReno [10], one of the most widely used
TCP variants in modern Internet.

Coremelt Attack. The Coremelt attack [5] is a DDoS attack
in which a large number of bots communicate with each other
in such a way that the traffic of each source-destination pair
traverses a core link of the network and their aggregation ex-
ceeds the link capacity. It has been shown that such an attack
can disrupt the operation of the entire Internet by deploying
only an average-size botnet [5]. Conventional authenticity-
based mitigation methods fail against the Coremelt attack
due to the use of legitimate-looking traffic by the bots. Also,
the distributed nature of the botnet makes defense techniques
such as path tracking or IP traceback more complex.

Several papers proposed defense mechanisms against the
Coremelt attack [11]–[16]. A new network architecture was
proposed in [11] as a defense against DDoS attacks. In [12],
a protocol for edge gateways (routers at the both ends of the
link) was developed to prevent flows that use IP spoofing for
link-flooding attacks. In [13], the authors suggested band-
width isolation between different traffic flows to minimize
the collateral damage caused by link-flooding attacks. A
collaborative defense mechanism which enables routers to
distinguish low-intensity attack flows from legitimate ones
was developed in [14]. In [15], observable statistics at routers
were used to infer the presence of an attack. In [16], the
authors proposed to detect attacks by rate change tests.

In this paper, we model the Coremelt attack in the scope
of the current network architecture, and propose a mitiga-
tion method based on penalizing the sources that are most
responsible for the congestion. This mitigation method does
not require identifying malicious sources/traffics or modify-
ing the transmission protocols used by sources. Simulation
results show that it successfully protects legitimate users and
suppresses aggressive flows.

III. PRELIMINARIES

In this section, we define the network model and formulate
the dynamics of TCP sources.

Fig. 2. A network with the “dumbbell” topology: N sources compete
for the finite bandwidth c of a single link. When the aggregate flow rate
y =

∑
xk > c, a fraction p of the traffic is dropped so that (1−p) y ≤ c.

Denote by R+ := [0,∞) the set of nonnegative real
numbers. Given a ∈ R and b ∈ R+, define the projection

(a)+b :=

{
a, if b > 0, or b = 0 and a ≥ 0;

0, if b = 0 and a < 0.

A. Network model

Consider the computer network shown in Fig. 2. In this
network, traffic flows from N sources compete for the finite
bandwidth C of a single link. Such a configuration is known
as the “dumbbell” topology, and is typically used to analyze
network congestion control [17]. Denote by xk the flow rate
from source k ∈ N := {1, . . . , N}, and by y the aggregate
flow rate at the link gateway, that is,

y =
∑
k∈N

xk. (1)

The link gateway manages the throughput via the “tail drop”
technique: if the aggregate flow rate y > C, the gateway
buffers the excess data in a queue, waiting to be transmitted;
when the queue is filled to its maximum capacity, the newly
arriving flows will be dropped until there is enough room to
accept incoming flows. In this case, the network is said to
be congested.

We assume that packets from different sources arrive at
the link gateway in a random order, so that they all suffer
from the same packet drop probability p. The value of p is
approximated via a simple model

p = g(y) :=

{
1− C/y, if y > C;

0, otherwise,
(2)

which has been used in, e.g., [18], [19]. This model ensures
that p ∈ [0, 1] at all times and the throughput never exceeds
the bandwidth, that is, (1 − p) y ≤ C. In the subsequent
analysis, we also use the property that g is a nondecreasing
function, that is

(y − y∗)(g(y)− g(y∗)) ≥ 0 ∀ y, y∗ ≥ 0. (3)

This property implies that the system defined by the memo-
ryless function g in (2) with input y− y∗ and output p− p∗
is passive (here y∗ is the steady-state aggregate flow rate and
p∗ = g(y∗) is the steady-state packet drop probability.).
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B. Dynamics of TCP

We consider TCP-NewReno [10], which was designed to
improve the performance of its original version TCP-Reno
[20] when there are multiple packet drops in one congestion
window, and has become one of the most widely used TCP
variants. In TCP-NewReno, source k sends a congestion
window of wk packets per RTT τk, and the window size
wk is governed by the following AIMD algorithm:{

w+
k ← wk + 1, without congestion;

w+
k ← wk/2, with congestion.

Here by congestion we mean that at least one of the wk
packets is dropped (detected by a missing ACK), and denote
by qk the congestion probability. Also, wk is halved only
once when there are multiple packet drops in one RTT.
We assume that the RTT τk is constant for each source
k, and define the flow rate xk as the average number of
packets transmitted per unit time, that is, xk = wk/τk.
This approximation is valid as our model is not intended to
provide accurate description at finer time scales than the RTT.
In each RTT, the window increases by 1 with probability
1−qk, and decreases by wk/2 with probability qk. Hence the
average change of window size is (1− qk)/τk−wkqk/(2τk)
per unit time, which, combined with xk = wk/τk, yields the
dynamical system model

ẋk =
1− qk
τ2k

− qkxk
2τk

. (4)

In particular, if xk = 0 then ẋk > 0, which ensures that the
flow rate xk is always nonnegative. We model the congestion
probability qk by

qk = τkxkp, (5)

which follows from the first-order approximation qk = 1 −
(1− p)wk ≈ wkp.
Remark 1. In analyzing loss-based TCP algorithms, many
papers adopt the dynamical system model

ẋk =
1− p
τ2k
− 1

2
px2k,

which is derived via the approximation that, on average, the
window increases by (1 − p)xk/wk per unit time due to
the (1 − p)xk ACKs received, and decreases by pxkwk/2
per unit time due to the pxk packets dropped [9]. However,
this formulation is developed for TCP-Reno [20], and is
not suitable for analyzing TCP-NewReno. More specifically,
if multiple packets are dropped in the same window, the
window is halved only once in TCP-NewReno, but multiple
times in TCP-Reno. See [21] for derivations of similar
dynamical system models for TCP-Reno and TCP-NewReno
in the discrete-time setting.

IV. ANALYSIS OF COREMELT ATTACK

In this section, we analyze the Coremelt attack in two
different scenarios using tools from dynamical systems the-
ory. In the first scenario, we assume all sources follow
TCP-NewReno, and compute the number of sources the

adversary needs to achieve a certain drop probability. In the
second scenario, we propose a modified TCP algorithm for
attackers through which a desired congestion probability can
be achieved. In both cases, Lyapunov analysis is used to
establish stability and convergence of the flow rates.

Suppose there is an adversary who has taken control of M
sources (called attackers), and is trying to congest the core
link so that the other S := N −M sources (called users)
suffer from low throughputs. We only consider the case of
static Coremelt attacks, in which the attackers (and thus
their transmission paths) are fixed. Without loss of generality,
denote by A := {1, . . . ,M} and U := {M + 1, . . . , N} the
sets of attackers and users, respectively. Hence N = A∪U .
We assume that all users follow TCP-NewReno. Attackers,
however, can follow a different algorithm, which is the same
for all attackers and is distributed in the sense that the
attackers do not coordinate with each other and adjust their
flow rates independently. Each source (user or attacker) is
not aware of the total number of sources, link capacity or
instantaneous link usage, and adjust its flow rate only based
on the feedback (i.e., the ACKs received).

A. Attack with TCP-NewReno

Suppose that all sources (users and attackers) follow TCP-
NewReno. Then all flow rates xk ≥ 0 satisfy the dynamical
system model (4) and (5), which can be rewritten as

ẋk = Gk(xk)(Dk(xk)− qk), k ∈ N , (6)

where
Dk(xk) :=

2

τkxk + 2

is a strictly positive, strictly decreasing function on R+, and

Gk(xk) :=
τkxk + 2

2τ2k
=

1

τ2kDk(xk)

is a strictly positive function on R+. Hence the network
becomes a dynamical system defined by (1), (2), (5), and
(6) with the state x := (x1, . . . , xN ) ∈ RN . Note that y and
p are uniquely determined by x through (1) and (2). Setting
ẋk = 0, we obtain from (5) and (6) that

Dk(x
∗
k) = q∗k = τkx

∗
kp
∗ > 0 ∀ k ∈ N . (7)

Consequently, the steady-state flow rate x∗k and drop proba-
bility p∗ are both positive, which also implies the steady-state
aggregate flow rate y∗ > C. Next, we establish stability and
convergence of flow rates.

Theorem 1. The system defined by (1), (2), (5), and (6) is
globally asymptotically stable w.r.t. a unique equilibrium.

Proof. The property that all Dk are strictly decreasing func-
tions ensures that there is a unique equilibrium x∗, which can
be calculated by combining (1), (2), (5), and (7). Consider
the function V :

∏
k∈N [−x∗k,∞)→ R+ defined by

V (x− x∗) :=
∑
k∈N

Vk(xk − x∗k)
τkx∗k
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with

Vk(xk − x∗k) :=
∫ xk

x∗
k

s− x∗k
Gk(s)

ds, k ∈ N .

The construction of V is inspired by [22]. As all x∗k > 0
and all Kk are strictly positive functions, V is a positive
definite function. Also, all Vk, and therefore V , are radially
unbounded. For each k ∈ N ,

V̇k =
dVk
dxk

ẋk

= (xk − x∗k)(Dk(xk)− qk)
= (xk − x∗k)(Dk(xk)−Dk(x

∗
k))− τkp(xk − x∗k)2

− τkx∗k(p− p∗)(xk − x∗k)
≤ (xk − x∗k)(Dk(xk)−Dk(x

∗
k))

− τkx∗k(p− p∗)(xk − x∗k),

where the last equality follows partially from (5) and (7),
and the inequality follows from τkp(xk − x∗k)2 ≥ 0. Hence

V̇ =
∑
k∈N

1

τkx∗k
V̇k

≤
∑
k∈N

(xk − x∗k)(Dk(xk)−Dk(x
∗
k))

τkx∗k

− (p− p∗)
∑
k∈N

(xk − x∗k)

=
∑
k∈N

(xk − x∗k)(Dk(xk)−Dk(x
∗
k))

τkx∗k
− (p− p∗)(y − y∗)

≤
∑
k∈N

(xk − x∗k)(Dk(xk)−Dk(x
∗
k))

τkx∗k
,

where the last equality follows from (1), and the last inequal-
ity follows from (2) and (3). As Dk is a strictly decreasing
function, (xk−x∗k)(Dk(xk)−Dk(x

∗
k))/(τkx

∗
k) is a negative

definite function of xk−x∗k. Hence V is a Lyapunov function,
and x∗ is globally asymptotically stable.

Theorem 1 ensures that the drop probability p will con-
verge to the equilibrium value p∗. Combining (1), (2), (5),
and (7), we obtain that∑

k∈N

1

τk
=

√
1 + 2/p∗ + 1

2(1− p∗)
p∗C. (8)

Suppose that every source has the same RRT τ , which is
reasonable because the wait in the congested link dominates
the network latency. Then the minimum number of attackers
needed to achieve a certain p∗ is given by

M ≥
√

1 + 2/p∗ + 1

2(1− p∗)
τp∗C − S,

in which the number of users S is usually unknown to the
adversary but can be estimated empirically. Even without
knowing S, it will be sufficient to deploy (

√
1 + 2/p∗ +

1) τp∗C/(2(1− p∗)) bots.

Fig. 3. Attack with a modified TCP: each attacker sets its flow rate xj by
amplifying an internal state ξj that emulates a TCP-NewReno flow with a
gain λj ≥ 0.

B. Attack with a modified TCP

Consider the case where the adversary intends to achieve
a target congestion probability q0 ∈ (0, 1) with a limited
number of attackers. On the one hand, simply following
standard TCP may not be sufficient, as the achievable drop
probability is constrained by (8). On the other hand, letting
the attackers send as much traffic as they can will greatly
increase the risk of being detected. In this subsection, we
develop a carefully orchestrated algorithm for the attackers
to adjust their flow rates based on the feedback, so that
the target congestion probability can be achieved without
generating excessive traffic.

Suppose that all users follow TCP-NewReno. Then their
flow rates satisfy

ẋi = Gi(xi)(Di(xi)− p), i ∈ U . (9)

Each attacker sets its flow rate xj by “amplifying” an internal
state ξj that emulates a TCP-NewReno flow with a gain
λj ≥ 0. The gain λj is adjusted according to the following
algorithm:{

λj ← λj + γjτjq0ξj , without congestion;
λj ← λj − γjτj(1− q0)ξj , with congestion.

(10)

Based on the same averaging arguments used in formu-
lating the dynamical system model for TCP-NewReno in
Section III-B, we obtain

ξ̇j = Gj(ξj)(Dj(ξj)− qj),
λ̇j = γjξj(q0 − qj)+λj

,

xj = λjξj ,

j ∈ A, (11)

where γj > 0 is a constant used to adjust the convergence
rate, and the projection ensures λj ≥ 0. (In particular, if
λj ≡ 1 then the attacker’s behavior is the same as TCP-
NewReno.) Hence the network (shown in Fig. 3) becomes a
dynamical system defined by (1), (2), (5), (9), and (11) with
the state (xu, ξ, λ) ∈ RN+M , where xu := (xM+1, . . . , xN ),
ξ := (ξ1, . . . , ξM ) and λ := (λ1, . . . , λM ). Note that y and
p are uniquely determined by (xu, ξ, λ) through (1), (2), and
(11). Setting ẋi = ξ̇j = λ̇j = 0, we obtain from (5), (9) and
(11) that the steady-state congestion probability q∗j = q0, and
the steady-state vector (x∗u, ξ

∗, λ∗) satisfies

Di(x
∗
i ) = τix

∗
i p
∗ > 0 ∀ i ∈ U ,

Dj(ξ
∗
j ) = q0 = τjλ

∗
jξ
∗
j p
∗ > 0 ∀ j ∈ A.

(12)
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Consequently, the steady-state values x∗i , λ
∗
j , ξ
∗
j and the

steady-state drop probability p∗ are all positive, which also
implies that the steady-state aggregate flow rate y∗ > C.
Next, we establish stability and convergence of the network,
which ensures that the the target congestion probability q0
can be achieved.

Theorem 2. The system defined by (1), (2), (5), (9) and (11)
is globally asymptotically stable w.r.t. a unique equilibrium.

Proof. The property that all Di and Dj are strictly de-
creasing functions ensures that there is a unique equilibrium
(x∗u, ξ

∗, λ∗), which can be calculated by combining (1), (2),
(5), and (12). Consider the function V :

∏
i∈U [−x∗i ,∞) ×∏

j∈A[−ξ∗j ,∞)×
∏
j∈A[−λ∗j ,∞)→ R+ defined by

V (xu − x∗u, ξ − ξ∗, λ− λ∗)

:=
∑
i∈U

Vi(xi − x∗i )
τix∗i

+
∑
j∈A

Vj(ξj − ξ∗j , λj − λ∗j )
τjλ∗i ξ

∗
j

,

where

Vi(xi − x∗i ) :=
∫ xi

x∗
i

s− x∗i
Gi(s)

ds, i ∈ U ,

and for j ∈ A,

Vj(ξi − ξ∗i , λj − λ∗j ) :=
(λj − λ∗j )2

2γj
+ λ∗j

∫ ξj

ξ∗j

s− ξ∗j
Gj(s)

ds.

Based on the proof of Theorem 1, we see that V is positive
definite and radially unbounded, and that

V̇i ≤ (xi − x∗i )(Di(xi)−Di(x
∗
i ))− τix∗i (p− p∗)(xi − x∗i )

for each i ∈ U . For each j ∈ A,

V̇j =
∂Vj
∂ξj

ξ̇j +
∂Vj
∂λj

λ̇j

= λ∗j (ξj − ξ∗j )(Dj(ξj)− qj) + (λj − λ∗j ) ξj(q0 − qj)+λj

≤ λ∗j (ξj − ξ∗j )(Dj(ξj)− qj) + (λj − λ∗j ) ξj(q0 − qj)
= λ∗j (ξj − ξ∗j )(Dj(ξj)−Dj(ξ

∗
j ))− τjp(λjξj − λ∗jξ∗j )2

− τjλ∗jξ∗j (p− p∗)(λjξj − λ∗jξ∗j )
≤ λ∗j (ξj − ξ∗j )(Dj(ξj)−Dj(ξ

∗
j ))

− τjλ∗jξ∗j (p− p∗)(λjξj − λ∗jξ∗j ),

where the first inequality follows from the fact that if λj = 0
and q0 < qj then (0− λ∗j ) ξj(q0 − qj) ≥ 0, the last equality
follows partially from (5) and (12), and the last inequality
follows from τjp(λjξj − λ∗jξ∗j )2 ≥ 0. Hence

V̇ =
∑
i∈U

1

τix∗i
V̇i +

∑
j∈A

1

τjλ∗i ξ
∗
j

V̇j

≤W (xu − x∗u, ξ − ξ∗)

− (p− p∗)
(∑
i∈U

(xi − x∗i ) +
∑
j∈A

(λjξj − λ∗jξ∗j )
)

=W (xu − x∗u, ξ − ξ∗)− (p− p∗)(y − y∗)
≤W (xu − x∗u, ξ − ξ∗)

with

W (xu − x∗u, ξ − ξ∗) :=
∑
i∈U

(xi − x∗i )(Di(xi)−Di(x
∗
i ))

τix∗i

+
∑
j∈A

(ξj − ξ∗j )(Dj(ξj)−Dj(ξ
∗
j ))

τjξ∗j
,

where the last equality follows from (1), and the last inequal-
ity follows from (2) and (3). As all Di and Dj are strictly
decreasing, W is a negative definite function of xu−x∗u and
ξ−ξ∗. Hence V is a weak Lyapunov function, and LaSalle’s
invariance principle implies that the the unique equilibrium
(x∗u, ξ

∗, λ∗) is globally asymptotically stable.

Theorem 2 ensures that the congestion probability con-
verges to the target value q0. When targeting a large q0,
the attackers need to engage relatively large flow rates
compared to the users’. From the perspective of link gateway,
this means that the attackers are advertising small RTTs,
and could potentially be identified if their perceived RTTs
become less than a predefined bound. This type of defense
mechanism is not explored here, but a topic for future
research. In the next section, we propose a mitigation method
which improves the performance of legitimate users even if
the attackers cannot be identified.

V. MITIGATION

One solution to DDoS attacks is to distinguish malicious
sources/traffics from legitimate ones. Defense mechanisms
using this approach include source authentication [23] and
packets inspection [24]. However, in the Coremelt attack the
attackers use low-intensity, legitimate-looking traffics, which
makes it difficult to detect the attack flows. In this section,
we consider the case where the attackers cannot be identified,
and propose a mitigation method solely based on the flow
rates from each source.

When attackers cannot be distinguished from legitimate
users, one option for mitigation is to punish aggressive flows
by dropping more of their packets. Following this approach,
our mitigation method is formulated by letting the link gate-
way monitor the source flow rates and assign an individual
drop probability for each source. For implementation, the
flow rate from each source can be approximated by counting
the packets it transmitted within a certain time (in the order
of a few RTTs); the individual drop probability can be
enforced by dividing the bandwidth and dropping packets
accordingly. In our mitigation method, the ideal individual
drop probabilities pk are assigned so that the bandwidth C
is evenly shared by all sources, that is, pk = max{1 −
C/(Nxk), 0}. Consequently, the sources with higher flow
rates will experience higher drop probabilities. The steady-
state throughput of every source is (1 − p∗k)x

∗
k = C/N

and the steady-state link usage ratio of legitimate users is
1−M/N , which is equivalent to the case where all sources
follow TCP-NewReno and have the same RTT.

The proposed mitigation method does not require mod-
ifying the transmission protocols used by sources; it only
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involves the link gateway adjusting the individual drop prob-
ability for each user based on its flow rate, the link capacity,
and the number of sources accessing the link. Moreover, it
ensures that, regardless of the attack strategy and even if the
attackers are coordinated, the steady-state link usage ratio
of users will always be at least 1−M/N . Consequently, to
occupy the same bandwidth as in the case without mitigation,
the adversary needs to deploy a significantly larger number
of bots. Limitations of this method include that legitimate
users with smaller RTTs will also be penalized, and it has
little effect when all attackers follow the same TCP algorithm
as users.

VI. SIMULATION RESULTS

In this section, we provide simulation results for the
scenarios where the attackers follow TCP-NewReno or the
modified TCP algorithm, and the link employs no mitiga-
tion or the proposed mitigation method. In all cases, we
assume that the legitimate users follow TCP-NewReno. In
the modified TCP algorithm, each attacker amplifies its flow
rate by the gain λj , which is updated according to (10). In
the proposed mitigation method, the link sets an individual
drop probability for each source based on its flow rate. In
simulations, assuming the source flows arrive in a random
order, the link gateway drops them one by one with the
corresponding probability, until the sum of remaining flows
becomes less than or equal to the link capacity.

We consider the scenario where 2000 users and 1000
attackers are transmitting over a link with a capacity of 106

packets per RTT. (For an average packet size of 500 bytes
and an average RTT of 50 ms, the link bandwidth is around
10 GBps.) We assume that all RTTs are the same and use that
value as the time unit in plots. We also set γj = 10 in (11),
and initialize congestion windows and gains λj randomly.

Figure 4 shows the congestion probability of attackers
and the link usage ratio of users when the attackers follow
TCP-NewReno or the modified TCP algorithm. When the
attackers follow TCP-NewReno, the congestion probability
is almost zero and the link usage ratio of users is about
1 − M/N = 2/3. Meanwhile, with the modified TCP
algorithm, the congestion probability of attackers converges
to the target value q0 and the link usage ratio of users is
almost zero.

Figure 5 shows the congestion probability of attackers
and the link usage ratio of users when the link deploys the
proposed mitigation method. When the attackers follow TCP-
NewReno, the congestion is almost zero and the link usage
ratio of users is still about 1−M/N = 2/3. Therefore, the
mitigation does not disrupt the performance of users when
all sources follow TCP-NewReno. When the attackers follow
the modified TCP algorithm, their congestion probability can
still converge to the target value, but the link usage ratio
of users becomes higher. Moreover, with a higher target
value q0 the attackers will suffer from an even lower link
usage ratio. Therefore, under our mitigation method, the
better strategy for attackers is to use the same transmission
protocol as users. As a result, the adversary needs to deploy
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Fig. 4. Effect of the modified TCP algorithm on the congestion probability
of attackers and the link usage ratio of users. When the attackers follow
TCP-NewReno, the congestion probability is almost zero and the link usage
ratio of users is about 2/3. Meanwhile, with the modified TCP algorithm,
the congestion probability of attackers converges to the target value q0 and
the link usage ratio of users is almost zero.
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Fig. 5. Effect of the proposed mitigation method on the congestion
probability of attackers and the link usage ratio of users. When the attackers
follow TCP-NewReno, the mitigation does not disrupt the performance
of users. When the attackers follow the modified TCP algorithm, their
congestion probability can still converge to the target value, but the link
usage ratio of users becomes larger. Therefore, the mitigation successfully
protects the sources following TCP-NewReno.

a significantly larger number of bots to occupy the same
bandwidth as in the case without mitigation.

VII. CONCLUSION

In this paper, we studied the Coremelt attack on a single-
link TCP network using a dynamical system model and Lya-
punov analysis. We considered two attack scenarios, one with
standard TCP and the other with a modified form of TCP, and
proposed a mitigation method that increases the cost of at-
tack. Future research directions include extending the results
to more complex network configurations, other transmission
protocols such as User Datagram Protocol (UDP) [25], and
dynamic Coremelt attacks; and generalizing the dynamical
system framework for modeling and mitigating more link-
flooding DDoS attacks such as the Crossfire attack [6].
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