Modeling and Mitigating the Coremelt Attack

Guosong Yang¹, Hossein Hosseini², Dinuka Sahabandu², Andrew Clark³, João Hespanha¹, and Radha Poovendran²

¹Department of Electrical and Computer Engineering, University of California, Santa Barbara

> ²Department of Electrical Engineering, University of Washington

³Department of Electrical and Computer Engineering, Worcester Polytechnic Institute

2018 American Control Conference

(日) (同) (日) (日)

Introduction

The Coremelt attack on a TCP network with the "dumbbell" topology

- Contribution
 - A dynamical system model for analysis
 - A limited number of subverted machines (bots): a modified TCP algorithm
 - A flow-based mitigation method
 - Simulation results

イロト イヨト イヨト イヨト

Distributed denial of service (DDoS) attack

 Attempt to disrupt network service by sending superfluous traffics from a vast number of bots

<ロ> (日) (日) (日) (日) (日)

Distributed denial of service (DDoS) attack

- Attempt to disrupt network service by sending superfluous traffics from a vast number of bots
- Soaring number of Internet of Things (IoT) \implies Escalating DDoS threats
 - 21 billion IoT devices by 2020

イロト イポト イヨト イヨト

Distributed denial of service (DDoS) attack

- Attempt to disrupt network service by sending superfluous traffics from a vast number of bots
- Soaring number of Internet of Things (IoT) \implies Escalating DDoS threats
 - 21 billion IoT devices by 2020
- One of world's largest DDoS attack to date [Ant+17]
 - 2016 on OVH (hosting service in France)
 - Mirai Botnet: 150,000 hacked IoT devices, 600,000 at peak
 - Attack flow rate: 1 Tbps

[Ant+17] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou, in 26th USENIX Secure Symp., 2017 = 2000

The Coremelt attack

- A link-flooding DDoS attack [SP11]
- Target: backbone link

[SP11] A. Studer and A. Perrig, in 16th Eur. Symp. Res. Comput. Secur., 2011 (≧) (≧) (≧) (⇒) (☉)

The Coremelt attack

- A link-flooding DDoS attack [SP11]
- Target: backbone link
- Distributed botnet
 - Available
 - Mirai Botnet: 150k bots, 600k at peak
 - Among M bots there are ${\cal O}(M^2)$ connections
 - Affordable
 - Price per 1000 bots: 100-180 in U.S. or U.K., 20-60 in Europe, less than 10 elsewhere

[SP11] A. Studer and A. Perrig, in 16th Eur. Symp. Res. Comput. Secur., 2011 イミト イミト ミーシュ つへで

Yang et al. (UCSB, UW, WPI)

The Coremelt attack

- A link-flooding DDoS attack [SP11]
- Target: backbone link
- Distributed botnet
 - Available
 - Mirai Botnet: 150k bots, 600k at peak
 - Among M bots there are ${\cal O}(M^2)$ connections
 - Affordable
 - Price per 1000 bots: 100-180 in U.S. or U.K., 20-60 in Europe, less than 10 elsewhere
- Low-intensity, legitimate-looking traffic
 - Able to evade conventional DDoS defenses

[SP11] A. Studer and A. Perrig, in 16th Eur. Symp. Res. Comput. Secur., 2011 < ≥ > < ≥ > ≥
> <</td>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
> </

Transmission Control Protocol (TCP)

- A congestion control algorithm [Pos81]
 - One congestion window per round-trip time (RTT)
 - Detect congestion based on missing acknowledgements (ACKs)
 - Additive-increase/multiplicative-decrease (AIMD) feedback algorithm [CJ89]

[Pos81] J. Postel, Information Sciences Institute, Tech. Rep., 1981

[CJ89] D.-M. Chiu and R. Jain, Comput. Networks ISDN Syst., 1989= > 김 문 + 김 > 김 문 - 김 - 영국(

Transmission Control Protocol (TCP)

- A congestion control algorithm [Pos81]
 - One congestion window per round-trip time (RTT)
 - Detect congestion based on missing acknowledgements (ACKs)
 - Additive-increase/multiplicative-decrease (AIMD) feedback algorithm [CJ89]
- TCP-NewReno [Hen+12]
 - Widely used in modern Internet
 - Better for bursts of packet drops

[Pos81] J. Postel, Information Sciences Institute, Tech. Rep., 1981

[[]CJ89] D.-M. Chiu and R. Jain, Comput. Networks ISDN Syst., 1989

Dynamical system model

- Analyze the impact and effectiveness of the Coremelt attack
- Establish flow composition and convergence via Lyapunov-based analysis
- Understand the relations between the number of bots, packet drop probability, and link usage ratio of users
- Develop a flow-based mitigation method

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

TCP-NewReno source

- One congestion window w_k per RTT τ_k
- Average flow rate $x_k = w_k / \tau_k$
- Congestion probability $q_k \approx w_k p$ with packet drop probability p

(日) (同) (三) (三)

TCP-NewReno source

- One congestion window w_k per RTT τ_k
- Average flow rate $x_k = w_k / \tau_k$
- Congestion probability $q_k \approx w_k p$ with packet drop probability p
- AIMD algorithm for TCP-NewReno

 $\begin{cases} w_k \leftarrow w_k + 1, & \text{without congestion}; \\ w_k \leftarrow w_k/2, & \text{with congestion} \end{cases}$

TCP-NewReno source

- One congestion window w_k per RTT τ_k
- Average flow rate $x_k = w_k / \tau_k$
- Congestion probability $q_k \approx w_k p$ with packet drop probability p
- AIMD algorithm for TCP-NewReno

 $\begin{cases} w_k \leftarrow w_k + 1, & \text{without congestion}; \\ w_k \leftarrow w_k/2, & \text{with congestion} \end{cases}$

Dynamical system model:

$$\dot{x}_k = \frac{1}{\tau_k^2} \left((1 - q_k) - \frac{w_k}{2} q_k \right)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

TCP-NewReno source

$$\dot{x}_k = \frac{1 - \tau_k x_k p}{\tau_k^2} - \frac{p x_k^2}{2}, \qquad k = 1, \dots, N$$

<ロ> (日) (日) (日) (日) (日)

TCP-NewReno source

$$\dot{x}_k = \frac{1 - \tau_k x_k p}{\tau_k^2} - \frac{p x_k^2}{2}, \qquad k = 1, \dots, N$$

Bottleneck link

• Aggregate rate
$$y = \sum x_k$$

- Bandwidth C
- Drop the excess packets

$$p = \begin{cases} 1 - C/y, & \text{if } y > C; \\ 0, & \text{otherwise} \end{cases}$$

イロト イヨト イヨト イヨト

Attack with M bots following TCP-NewReno

イロト イヨト イヨト イヨト

Attack with M bots following TCP-NewReno

Theorem 1

- If M bots and N M users all follow TCP-NewReno, the dynamical system is globally asymptotically stable (GAS)
- Packet drop probability converge to p^* satisfying $\sum_{k=1}^{N} \frac{1}{\tau_k} = \frac{\sqrt{1+2/p^*+1}}{2(1-p^*)} p^*C$

Attack with ${\cal M}$ bots following TCP-NewReno

Theorem 1

- If M bots and N M users all follow TCP-NewReno, the dynamical system is globally asymptotically stable (GAS)
- Packet drop probability converge to p^* satisfying $\sum_{k=1}^{N} \frac{1}{\tau_k} = \frac{\sqrt{1+2/p^*+1}}{2(1-p^*)} p^*C$

Proof

 \blacksquare Lyapunov function $V(x-x^{\ast})$ such that

$$\dot{V}(x-x^*) \le -W(x-x^*) - (p-p^*)(y-y^*)$$

- $W(x x^*)$ is positive definite
- \blacksquare Packet drop probability p is increasing in aggregate rate y

イロト イポト イヨト イヨト

Attack with ${\cal M}$ bots following TCP-NewReno

Theorem 1

- If M bots and N M users all follow TCP-NewReno, the dynamical system is globally asymptotically stable (GAS)
- Packet drop probability converge to p^* satisfying $\sum_{k=1}^{N} \frac{1}{\tau_k} = \frac{\sqrt{1+2/p^*+1}}{2(1-p^*)} p^*C$

Implication

 \blacksquare For the same RTT $\tau,$ the link usage ratio of users is 1-M/N

(日) (同) (日) (日)

Attack with ${\cal M}$ bots following TCP-NewReno

Theorem 1

- If M bots and N M users all follow TCP-NewReno, the dynamical system is globally asymptotically stable (GAS)
- Packet drop probability converge to p^* satisfying $\sum_{k=1}^{N} \frac{1}{\tau_k} = \frac{\sqrt{1+2/p^*+1}}{2(1-p^*)} p^*C$

Implication

- \blacksquare For the same RTT $\tau,$ the link usage ratio of users is 1-M/N
- A target value p^* can be achieved by enough bots so that $N \geq \frac{\sqrt{1+2/p^*}+1}{2(1-p^*)}\,p^*\tau C$

(日) (同) (三) (三)

Attack with M bots following a modified TCP

イロト イヨト イヨト イヨト

Attack with M bots following a modified TCP

Modified TCP source

- Internal state ξ_j that follows the AIMD algorithm for TCP-NewReno
- Flow rate $x_j = \lambda_j \xi_j$ with gain $\lambda_j \ge 0$
- Drive the congestion probability to target value q_0 by slowly adjusting λ_j :

$$\dot{\lambda}_j = \gamma_j \xi_j (q_0 - q_j)^+_{\lambda_j}$$

(日) (同) (三) (三)

Attack with M bots following a modified TCP

Theorem 2

- If N M users follow TCP-NewReno and M bots follow the modified TCP, the dynamical system is GAS
- Congestion probability converge to target value q_0 for any M

Attack with M bots following a modified TCP

Theorem 2

- If N M users follow TCP-NewReno and M bots follow the modified TCP, the dynamical system is GAS
- Congestion probability converge to target value q_0 for any M

<u>Proof</u>

 \blacksquare Weak Lyapunov function $V(x_u-x_u^*,\xi-\xi^*,\lambda-\lambda^*)$ such that

$$\dot{V}(x_u - x_u^*, \xi - \xi^*, \lambda - \lambda^*) \le -W(x_u - x_u^*, \xi - \xi^*) - (p - p^*)(y - y^*)$$

- $W(x_u x_u^*, \xi \xi^*)$ is positive definite, p is increasing in y
- LaSalle's invariance principle

イロト イポト イヨト イヨト

Mitigation

Detection-based mitigation: source authentication, packets inspection

- Less effective against Coremelt:
 - Communication between bot pairs
 - Low-intensity, legitimate-looking traffic

<ロ> (日) (日) (日) (日) (日)

Mitigation

Detection-based mitigation: source authentication, packets inspection

- Less effective against Coremelt:
 - Communication between bot pairs
 - Low-intensity, legitimate-looking traffic
- Flow-based mitigation: penalize aggressive sources
 - Monitor source flow rates and assign individual drop probability p_k so that the bandwidth C is evenly shared: $p_k \sim 1 C/(Nx_k)$

<ロト <回ト < 回ト < 回ト

Mitigation

Detection-based mitigation: source authentication, packets inspection

- Less effective against Coremelt:
 - Communication between bot pairs
 - Low-intensity, legitimate-looking traffic
- Flow-based mitigation: penalize aggressive sources
 - Monitor source flow rates and assign individual drop probability p_k so that the bandwidth C is evenly shared: $p_k \sim 1 C/(Nx_k)$
 - Advantages:
 - Guaranteed link usage ratio of users: 1-M/N
 - Does not require modifying source transmission protocols

Mitigation

Detection-based mitigation: source authentication, packets inspection

- Less effective against Coremelt:
 - Communication between bot pairs
 - Low-intensity, legitimate-looking traffic
- Flow-based mitigation: penalize aggressive sources
 - Monitor source flow rates and assign individual drop probability p_k so that the bandwidth C is evenly shared: $p_k \sim 1 C/(Nx_k)$
 - Advantages:
 - Guaranteed link usage ratio of users: 1-M/N
 - Does not require modifying source transmission protocols
 - Limitations:
 - Extra resources needed to monitor source flow rates
 - Users with smaller RTTs will also be penalized
 - No effect against attacks with bots following TCP-NewReno

Simulation: without mitigation

- \blacksquare Network of 2,000 users and 1,000 bots
- Link capacity of 1 million packets per RTT

- Attack with TCP-NewReno: low congestion probability; link usage ratio of users is 2/3
- Attack with modified TCP: target congestion probability; link usage ratio of users is low

イロト 不得下 イヨト イヨト

Simulation: with mitigation

- \blacksquare Network of $2000~{\rm users}$ and $1000~{\rm bots}$
- Link capacity of 10⁶ packets per RTT

 Attack with modified TCP: target congestion probability; link usage ratio of users is high

イロト イヨト イヨト イヨト

Conclusion

- Contribution
 - A dynamical system model for analyzing the Coremelt attack on a TCP network
 - A limited number of bots: a modified TCP algorithm
 - A flow-based mitigation method
 - Simulation results

イロン イヨン イヨン イヨン

Conclusion

- Contribution
 - A dynamical system model for analyzing the Coremelt attack on a TCP network
 - A limited number of bots: a modified TCP algorithm
 - A flow-based mitigation method
 - Simulation results
- Future work
 - User Datagram Protocol (UDP) [Pos80]
 - The Crossfire attack [KLG13]

[Pos80] J. Postel, Information Sciences Institute, Tech. Rep., 1980

[KLG13] M. S. Kang, S. B. Lee, and V. D. Gligor, in 2013 IEEE Symp.⊡Secur⊕Priv., 2013(≥) ≥ - ∞ <

Conclusion

References

- [Ant+17] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou, "Understanding the Mirai botnet," in 26th USENIX Secur. Symp., 2017.
- [CJ89] D.-M. Chiu and R. Jain, "Analysis of the increase and decrease algorithms for congestion avoidance in computer networks," *Comput. Networks ISDN Syst.*, 1989.
- [Hen+12] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, "The NewReno Modification to TCP's Fast Recovery Algorithm," Internet Engineering Task Force, Tech. Rep., 2012.
- [KLG13] M. S. Kang, S. B. Lee, and V. D. Gligor, "The Crossfire attack," in 2013 IEEE Symp. Secur. Priv., 2013.
- [Pos80] J. Postel, "User Datagram Protocol," Information Sciences Institute, Tech. Rep., 1980.
- [Pos81] J. Postel, "Transmission Control Protocol," Information Sciences Institute, Tech. Rep., 1981.
- [SP11] A. Studer and A. Perrig, "The Coremelt attack," in 16th Eur. Symp. Res. Comput. Secur., 2011.

<ロ> (日) (日) (日) (日) (日)

Acknowledgements

UNIVERSITY of WASHINGTON

- * @ * * 注 * * 注 *