
Chapter 15
Modeling and Mitigating Link-Flooding
Distributed Denial-of-Service Attacks via
Learning in Stackelberg Games

Guosong Yang and João P. Hespanha

Abstract This work formulates the mitigation of link-flooding distributed denial-
of-service attacks as a routing problem among parallel links. In order to address the
challenge that the adversary can observe the routing strategy before assigning attack
traffic, we model the conflict between routing and attack as a Stackelberg game. For
a general class of adversaries, we establish a characterization of an optimal attack
strategy that reduces the search space to a finite set, and construct explicit formulae
for Stackelberg equilibria and costs for a special class of networks. When the attack
objective and capacity are unknown, we propose a learning-based approach that
predicts the routing cost using a neural network and minimizes the predicted cost
via projected gradient descent. A simulation study is provided to demonstrate the
effectiveness of our approach.

15.1 Introduction

A major threat to Internet security today is the distributed denial-of-service (DDoS)
attack, in which an adversary attempts to interrupt legitimate users’ access to certain
network resources by sending superfluous traffic from a vast number of subverted
machines (bots). Since the first incident of DDoS attack reported by the Computer
Incident Advisory Capability in 2000 [1], many large-scale DDoS attacks have been
launched against crucial infrastructures and services [2, 3]. Moreover, there has been
a drastic and persistent increase in the size and frequency of DDoS attacks every
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year. The 14th annual Worldwide Infrastructure Security Report from NETSCOUT
Systems, Inc. showed that the global max attack size reached 1.7 Tbps in 2018, a
273% increase from 2017 [4]. The same report also found that 94% of enterprises
observedDDoS attacks on their encrypted traffic in 2018, nearly twice the percentage
as 2017.

As pointed out in [3], most DDoS attacks exploit one or both of the follow-
ing methods: (1) disrupting legitimate users’ service by exhausting server resources
and (2) disrupting legitimate users’ connectivity by exhausting link bandwidth. The
second method (called link-flooding DDoS) proves to be especially effective and
stealthy as it can be executed without sending attack traffic to the victims. Novel
link-flooding DDoS attacks such as the Coremelt attack [5] and the Crossfire attack
[6] have attracted substantial research interest, since they allow individual bots par-
ticipating in the coordinated attack to keep their transmission rates below detection
thresholds, yet effectively exhausts the bandwidth of target links. Existing results on
mitigating link-flooding DDoS attacksmainly focus on developing techniques to dis-
tinguish attack traffic from legitimate one [7–12]. However, the adversary can often
rotate attack traffic among different sets of bots and links to maintain congestion
[6], which motivates us to consider scenarios where the detection of attack traffic is
impossible. In [13], the authors studied the modeling and mitigation of the Coremelt
attack [5] in such scenarios.

Game theory provides a systematic framework for modeling the conflict between
a router and an adversary orchestrating a DDoS attack [14–17]. Existing game-
theoretical results on mitigating DDoS attacks mainly focus on Nash equilibrium—a
tuple of actions for which no player has a unilateral incentive to change, see, e.g.,
[18–20] and references therein. However, most DDoS attacks are characterized by
asymmetric information: the router is unaware of the attack objective and capacity a
priori, whereas the adversary is able to observe the routing action and assign attack
traffic accordingly [6]. Since asymmetric information often leads to scenarios with
no Nash equilibrium, we consider instead a hierarchical game model proposed by
Stackelberg [21]. In our two-player Stackelberg game, the router (called the leader)
selects its action first, and then the adversary (called the follower), informed of
the router’s choice, selects its own action. Standard conditions for existence of a
Stackelberg equilibrium are weaker than those of a Nash equilibrium [16, p. 181].

Stackelberg games have been applied to network problemswith asymmetric infor-
mation in applications such as routing [22], scheduling [23], and channel allocation
[24]. They have also been applied to various real-world security domains and have
lead to practical implementations including the ARMORprogram at the Los Angeles
International Airport [25], the IRIS program used by the US Federal Air Marshals
[26], and counterterrorism programs for crucial infrastructures such as power grid
and oil reserves [27, 28]. A recent work [29] analyzed Nash and Stackelberg equi-
libria for a routing game that is similar but more restrictive than the one considered
in this work.

Since the router only has incomplete information of the attack objective and capac-
ity, a fundamental question is whether an iterative data-driven routing algorithm can
converge to a Stackelberg equilibrium as it adjusts routing based on historical out-
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comes. For our Stackelberg game, standard game-theoretical learning processes such
as fictitious play [30, 31] and gradient response [32, 33] cannot be applied. Most
existing results on learning in Stackelberg games are limited to linear and quadratic
costs and finite action sets [34–36], which are too restrictive for modeling the DDoS
attacks of interest. In [37], the authors proposed a learning-based approach for Stack-
elberg games that could simultaneously estimate the attack strategy andminimize the
routing cost, based on adaptive control techniques and hysteresis switching. A moti-
vation for the current work is to extend the results from [37] for more complicated
problems such as mitigating link-flooding DDoS attacks based on neural network
techniques.

In this work, we formulate the mitigation against link-flooding DDoS attacks as
a routing problem among parallel links. Our goal is to construct an optimal routing
strategy that minimizes the damage caused by the attack, with the caveat that the
adversary is able to observe the routing strategy before assigning attack traffic. The
network concepts and the routing and attack optimization problems are described in
Sect. 15.2. Our formulation provides a high level of generality by allowing scenarios
where the “attack” is actually benign network traffic or a combination of benign and
malicious traffic.

In Sect. 15.3, we model the conflict between routing and attack as a Stackelberg
game. In Stackelberg games, it is common for the follower to have multiple optimal
actions against a leader’s action, leading to different equilibria for “optimistic” or
“pessimistic” leaders that assume the follower will play the optimal actions that are
best or worst for the leader, respectively. Therefore, we adopt the notions of strong
and weak Stackelberg equilibria, in which the former corresponds to an optimistic
router and the latter a pessimistic one.

In Sect. 15.4, we consider a general class of adversaries that may have different
priorities for different links, and establish a characterization of an optimal attack
strategy by showing that it belongs to a finite set. Moreover, we construct explicit
formulae for strong and weak Stackelberg equilibria and costs for a special class of
networks. Our results show that there is no weak Stackelberg equilibrium unless the
adversary has the same priority for all links, in which case the strong Stackelberg
equilibrium is also a weak one. Nevertheless, a pessimistic router can always achieve
a cost arbitrarily close to the strong Stackelberg cost.

In Sect. 15.5, we considered the more general scenario where the router does not
know the attack objective or capacity and thus cannot predict the attack action or the
cost associated with a specific routing action. We propose a learning-based approach
that predicts the routing cost using a neural network trained based on historical
data, and then minimizes the predicted routing cost via projected gradient descent.
A simulation study is provided in Sect. 15.6 to demonstrate the effectiveness of our
leaning-based approach. Section15.7 concludes the chapter with a brief summary
and an outlook for future research directions.

Notations: Let R≥0, R>0, and Z>0 be the sets of non-negative real numbers,
positive real numbers, and positive integers, respectively. Denote by 1n the vector
(1, . . . , 1) ∈ R

n . Denote by ‖ · ‖ the Euclidean norm for vectors. For a vector v ∈ R
n ,



436 G. Yang and J. P. Hespanha

denote by vi its i-th scalar component and write v = (v1, . . . , vn). For a set S ⊂ R
n ,

denote by |S| its cardinality, and by ∂S and S its boundary and closure, respectively.

15.2 Routing and Attack in Communication Network

We are interested in modeling and mitigating link-flooding DDoS attacks. Many
such attacks focus on flooding parallel links that form a so-called bottleneck of the
network to maximize congestion [38]. Therefore, we abstract the communication
network as a directed graph of L parallel bottleneck links connecting a source to a
destination, and focus our discussion on routing traffic among them. The set of links
is denoted by L := {1, . . . , L}.

Let R > 0 be the total desired transmission rate of legitimate traffic that a router
needs to distribute among the L parallel links. The traffic distribution is represented
by a routing assignment vector r ∈ R

L≥0 that satisfies

∑

l∈L
rl = 1.

If there was no congestion on a link l ∈ L, then the transmission rate of legitimate
traffic from the router on link l would be the desired user rate rl R.

Motived by link-floodingDDoS attacks such as the crossfire attack [6], we assume
that an adversary disrupts communication by injecting superfluous traffic on the links
according to an attack assignment vector a ∈ R

L≥0, and call al the attack rate on link
l ∈ L. The attack is constrained by a total budget A > 0, that is,

∑

l∈L
al ≤ A.

For each link l ∈ L, there is a constant capacity cl > 0 that upper-bounds its total
transmission rate. If the sum of the desired user rate rl R and the attack rate al is
larger than the capacity cl , then there is congestion on link l which results in packet
drops and retransmissions. In many widely used transmission protocols such as the
transmission control protocol (TCP) [39, 40], legitimate users will decrease their
transmission rates until the total rate on link l is no longer larger than its capacity cl .
By contrast, a malicious adversary aims at sustaining congestion and thus does not
decrease the attack rates. Therefore, we model the effect of congestion by a decrease
in user rates and define the actual user rates by

ul := min{rl R, max{cl − al , 0}}, l ∈ L. (15.1)

The goal of the router is to maximize the sum of actual user rates. Therefore, it
minimizes the routing cost defined by
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J (r, a) := −
∑

l∈L
ul . (15.2)

Motivated by link-floodingDDoS attacks, we call rl R and al the transmission rates of
legitimate and of attack traffic, respectively, but in practice the key distinction is that
the former represents traffic that the router aims to protect (in terms of minimizing
the routing cost (15.2) above), whereas the router’s objective does not care for the
latter. If a was indeed generated by a malicious adversary, it would likely attempt to
maximize the routing cost (15.2), or equivalently, to minimize the attack cost defined
by

H(a, r) := −J (r, a) =
∑

l∈L
ul . (15.3)

However, in general one should consider more general attack costs H(a, r) that may
not be precisely the symmetry of J (r, a) and could even be altogether independent
of the routing assignment r . Not knowing the attack cost H(r, a) is in fact the key
motivation for the learning-based approach proposed in this paper. In view of this,
we only make the mild assumption that H(a, r) is continuous in a for each fixed r ,
except in Sect. 15.4 where we will consider an attack cost for a malicious adversary
that generalizes (15.3).

In summary, the routing optimization problem is given by

min
r

J (r, a), (15.4a)

s.t.
∑

l∈L
rl = 1 (rate conservation), (15.4b)

rl ≥ 0 ∀l ∈ L (non-negative rate), (15.4c)

and the attack optimization problem is given by

min
a

H(a, r), (15.5a)

s.t.
∑

l∈L
al ≤ A (attack budget), (15.5b)

al ≥ 0 ∀l ∈ L (non-negative rate). (15.5c)

In particular, we consider the general case where the router does not even know
the total desired transmission rate R, and thus do not assume rl R ≤ c0 on any link
l ∈ L. Both the routing cost J (r, a) and the attack cost H(a, r) are functions of the
routing assignment r and the attack assignment a. Therefore, we model the conflict
between the router and the adversary using a game-theoretical model defined in the
next section.
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15.3 Stackelberg Game Model

We are interested in scenarios where there is asymmetric information between the
router and the adversary. Specifically, the adversary is able to observe the routing
assignment r before selecting the attack assignment a. To model such scenarios,
we consider a hierarchical game model called Stackelberg games [21], in which the
router (called the leader) selects the routing action r ∈ R first, and then the adversary
(called the follower), informed of the router’s choice, selects the attack action a ∈ A.
The routing action setR and the attack action set A are defined by

R := {r ∈ R
L
≥0 : (4b) and (4c) hold},

A := {a ∈ R
L
≥0 : (5b) and (5c) hold}.

The game between the router and the adversary is fully defined by the tuple
(R,A, J, H). Formally, Stackelberg equilibria are defined as follows, see, e.g., [14,
Sect. 3.1], [16, Definition 4.6, p. 179], and [41, 42].

Definition 15.1 (Stackelberg) Given a game defined by the tuple (R,A, J, H), a
routing action r∗

s ∈ R is called a strong Stackelberg equilibrium routing action if

J ∗
s := inf

r∈R
min

a∈βa(r)
J (r, a) = min

a∈βa(r∗
s )
J (r∗

s , a), (15.6)

where
βa(r) := argmin

a∈A
H(a, r)

denotes the set of optimal attack actions against a routing action r ∈ R, and J ∗
s is

known as the strong Stackelberg routing cost; a routing action r∗
w ∈ R is called a

weak Stackelberg equilibrium routing action if

J ∗
w := inf

r∈R
max
a∈βa(r)

J (r, a) = max
a∈βa(r∗

w)
J (r∗

w, a), (15.7)

where J ∗
w is known as the weak Stackelberg routing cost; and for an ε > 0, a routing

action r∗
ε ∈ R is called a weak ε Stackelberg routing action for (R,A, J, H) if

max
a∈βa(r∗

ε )
J (r∗

ε , a) ≤ J ∗
w + ε. (15.8)

For each fixed r ∈ R, as the function H(a, r) is continuous in a and the set
A is compact, the set βa(r) is nonempty and compact; thus the minima in (15.6)
and the maxima in (15.7) and (15.8) can be attained. However, the functions
mina∈βa(r) J (r, a) and maxa∈βa(r) J (r, a) are not necessarily continuous, and thus
may only have infima over the set R.

The difference between strong and weak Stackelberg equilibria stems from sce-
narios where the optimal attack action is non-unique, that is, where |βa(r)| > 1.
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Such scenarios are common under Stackelberg equilibrium routing actions, a phe-
nomenon similar to the fact that in a mixed-strategy Nash equilibrium, every pure
strategy in the support of a player’s mixed strategy is a best response to the opponents
mixed strategy [15, Lemma 33.2, p. 33]. If |βa(r)| > 1, which optimal attack action
the adversary plays will affect the resulting routing cost. The strong Stackelberg
equilibrium represents the “optimistic” view that the adversary will select the one
that is best for the router, whereas the weak Stackelberg equilibrium represents the
“pessimistic” view that the worst one for the router will be selected. The conditions
for existence of a strong Stackelberg equilibrium are weaker than those of a weak
Stackelberg equilibrium [43], as we shall see in Sect. 15.4.1. However, a weak Stack-
elberg equilibrium is usually more desirable as it provides a guaranteed upper bound
for the routing cost, regardless of the adversary’s tie-breaking rule. The terminology
“strong” and “weak” originates from [42] and is widely used in Stackelberg Security
Games, see, e.g., [44] and references therein.

In this work, we consider games with incomplete information where the router
does not know the attack cost function H or even the attack action set A and thus
cannot predict the set of optimal attack actions βa(r). This level of generality allows
us to capture scenarios where the “adversary” is in fact benign and the attack action
a may not even depend on the routing action r . However, in the following section
we do focus our attention on malicious adversaries with a cost function that gener-
alizes (15.3).

15.4 Optimal Attack and Stackelberg Equilibria for
Malicious Adversaries

As mentioned in Sect. 15.2, a natural candidate for the attack cost H(a, r) for a
malicious adversary is given by (15.3), which makes (R,A, J, H) a zero-sum game.
In this section, we consider a more general scenario that deviates from the zero-sum
case, as the adversary may have different priorities for different links, and the attack
cost is defined by

H(a, r) :=
∑

l∈L
γlul, (15.9)

where γ = (γ1, . . . , γL) ∈ (0, 1]L can be viewed as an attack priority vector.
From the definition of the actual user rates (15.1),we see that amalicious adversary

with the attack cost (15.9) has no incentive to assign less attack traffic than the total
budget A or to assign more attack traffic to a link than its capacity. Therefore, for
each routing action r ∈ R, there is an optimal attack action a ∈ βa(r) such that

∑

l∈L
al = A (15.10)
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with
al ≤ cl ∀l ∈ L. (15.11)

For attack actions a ∈ A such that (15.11) holds, we can rewrite the definition of the
actual user rates (15.1) by

ul := min{rl R, cl − al}, l ∈ L.

Also, we assume
A <

∑

l∈L
cl ,

since otherwise the adversary can simply fill all the bottleneck links and the attack
optimization problem becomes trivial.

In the following result, we establish that there is always an optimal attack action
with the attack rates equal to 0 or to the corresponding link capacities for all but one
link.

Theorem 15.1 For each routing action r ∈ R, there is an optimal attack action
a∗ ∈ βa(r) such that (15.10) and (15.11) hold, and there is at most one link l0 ∈ L
where a∗

l0
∈ (0, cl0), that is,

a∗ ∈ A∗ := {a ∈ A : (10) and (11) hold, and |{l ∈ L : al ∈ (0, cl)}| ≤ 1}.
(15.12)

Proof Based on the analysis before Theorem 15.1, there is an optimal attack action
ā∗ ∈ βa(r) such that (15.10) and (15.11) hold. We construct an optimal attack action
a∗ ∈ βa(r) ∩ A∗ as follows.

1. Let a = ā∗. Then a ∈ βa(r) and satisfies (15.10) and (15.11).
2. If there are two links l1, l2 ∈ L such that

al1 ∈ (0, cl1), al2 ∈ (0, cl2),

then a /∈ A∗ and we go to step 3; otherwise a ∈ A∗ and we go to step 4.
3. Consider the following two possibilities.

(a) If there is a link l̄1 ∈ {l1, l2} such that al̄1 ≤ cl̄1 − rl̄1R, then the corresponding
actual user rate satisfies

ul̄1 = min{rl̄1R, cl̄1 − al̄1} = rl̄1R.

We define an attack action ā ∈ A by moving as much attack traffic on l̄1 as
possible to the other link l̄2 ∈ {l1, l2}\{l̄1}, that is,
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āl :=

⎧
⎪⎨

⎪⎩

max{0, al1 + al2 − cl̄2}, l = l̄1,

min{al1 + al2 , cl̄2}, l = l̄2,

al , l ∈ L\{l1, l2}.
(15.13)

Then clearly ā ∈ A and satisfies (15.10) and (15.11) with ā in place of a, and
at least one of āl̄1 = 0 and āl̄2 = cl̄2 holds. Moreover, we have

āl̄1 ≤ al̄1 ≤ cl̄1 − rl̄1R, āl̄2 ≥ al̄2;

thus the corresponding actual user rates satisfy ūl = ul for all l ∈ L\{l1, l2}
and

ūl̄1 = min{rl̄1R, cl̄1 − āl̄1} = rl̄1R = ul̄1 ,

ūl̄2 = min{rl̄2 R, cl̄2 − āl̄2} ≤ min{rl̄2 R, cl̄2 − al̄2} = ul̄2 .

Therefore, the attack costs for ā and a satisfy

H(ā, r) − H(a, r) = γl̄1 ūl̄1 + γl̄2 ūl̄2 − γl̄1ul̄1 − γl̄2ul̄2 ≤ 0;

thus a ∈ βa(r) implies ā ∈ βa(r).
(b) Otherwise al1 ∈ (cl1 − rl1R, cl1) and al2 ∈ (cl2 − rl2 R, cl2). Let l̄1 be the link

between l1 and l2 with a lower priority for the attack, that is,

l̄1 ∈ argmin
l∈{l1, l2}

γl

(if γ1 = γ2, pick an arbitrary one). Again, we define an attack action ā ∈ A
by moving as much attack traffic on l1 and l2 as possible to the other link l̄2 ∈
{l1, l2}\{l̄1} according to (15.13). Then clearly ā ∈ A and satisfies (15.10)
and (15.11) with ā in place of a, and at least one of āl̄1 = 0 and āl̄2 = cl̄2
holds. Moreover, we have

āl̄1 + āl̄2 = al̄1 + al̄2 , āl̄2 ≥ al̄2 ≥ cl̄2 − rl̄2 R;

thus the corresponding actual user rates satisfy

ūl̄1 = min{rl̄1R, cl̄1 − āl̄1} ≤ cl̄1 − āl̄1 ,

ūl̄2 = min{rl̄2 R, cl̄2 − āl̄2} = cl̄2 − āl̄2 .

Therefore, the attack costs for ā and a satisfy
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H(ā, r) − H(a, r) = γl̄1 ūl̄1 + γl̄2 ūl̄2 − γl̄1ul̄1 − γl̄2ul̄2
≤ γl̄1(cl̄1 − āl̄1) + γl̄2(cl̄2 − āl̄2)

− γl̄1(cl̄1 − al̄1) − γl̄2(cl̄2 − al̄2)

= γl̄1(al̄1 − āl̄1) + γl̄2(al̄2 − āl̄2)

= (γl̄1 − γl̄2)(āl̄2 − al̄2) ≤ 0;

thus a ∈ βa(r) implies ā ∈ βa(r).

In summary, we have constructed an optimal attack action ā ∈ βa(r) so that
(15.10) and (15.11) hold with ā in place of a, and there is only one link l ∈ {l1, l2}
where al ∈ (0, cl). Let a = ā and return to Step 2.

4. Let a∗ = a. Then a∗ ∈ βa(r) ∩ A∗.

As the number of links L is constant, the above algorithm is guaranteed to ter-
minate before running Step 3 for L times. Therefore, an optimal attack action
a∗ ∈ βa(r) ∩ A∗ exists. �

Based on Theorem 15.1, it suffices to search for an optimal attack action in the
subset A∗ defined by (15.12) of the attack action set A. Therefore, from now on
we restrict our attention to attack actions fromA∗ and the game (R,A∗, J, H), and
define the corresponding set of optimal attack actions against a routing action r ∈ R
by

β∗
a (r) := argmin

a∈A∗
H(a, r) = βa(r) ∩ A∗.

Remark 15.1 Consider the casewhere the attack action a = amal + aben, where amal

represents traffic from a malicious adversary and aben represents traffic from benign
users that do not respond to the router, that is, the corresponding best response set
βaben(r) is constant. Then it is straightforward to see that the result in Theorem 15.1
still holds with cl − abenl in place of cl in (15.12).

15.4.1 Optimal Attack and Stackelberg Equilibria for
Networks with Identical Links

One can show that, in general, finding an optimal attack action in the setA∗ defined
by (15.12) is at least as hard as solving the NP-hard knapsack problem [45]; cf. [29].
However, the problem is simpler when all the parallel links have the same capacity
c0. In this case, the set A∗ defined in (15.12) is the set of attack actions with attack
rate c0 on 
A/c0� links and 0 on L − �A/c0
 links, that is,

A∗ = {a ∈ A : (10) and (11) hold,

and |{l ∈ L : al = c0}| = 
A/c0� and |{l ∈ L : al = 0}| = L − �A/c0
}.
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For an attack action a ∈ A∗, we denote by l0(a) the link on which al0(a) ∈ (0, c0).
The attack rate on the link l0(a) is a constant given by

al0(a) = arem := A − 
A/c0�c0.

For an attack budget A such that A/c0 ∈ Z, we have {l0(a)} = ∅ and arem = 0. For a
routing action r ∈ R and an attack action a ∈ A∗, the routing cost J (r, a) and attack
cost H(a, r) are given by

J (r, a) = −ul0(a) −
∑

l∈L:al=0

ul

= −min{rl0(a)R, c0 − arem} −
∑

l∈L:al=0

min{rl R, c0}

H(a, r) = γl0(a)ul0(a) +
∑

l∈L:al=0

γlul

= γl0(a) min{rl0(a)R, c0 − arem} +
∑

l∈L:al=0

γl min{rl R, c0}.

(15.14)

If additionally
min{rl R, c0} ≤ c0 − arem ∀l ∈ L, (15.15)

then an attack a ∈ A∗ will not cause congestion on l0(a), and thus

J (r, a) = −
∑

l∈L:al<c0

min{rl R, c0}, H(a, r) =
∑

l∈L:al<c0

γl min{rl R, c0}.
(15.16)

Note that (15.15) always holds for an attack budget A such that A/c0 ∈ Z. A neces-
sary condition for (15.15) is A/c0 − 
A/c0� ≤ 1 − R/(Lc0).

For the case where all the parallel links have the same capacity c0, Theorem 15.1
can be extend to the following result, which shows that an optimal attack action can
be found after at most L trials.

Corollary 15.1 Consider the case of equal link capacities cl = c0 for all l ∈ L. For
a routing action r ∈ R, the set of optimal attack actions in A∗ satisfies that

β∗
a (r) ⊂ A∗

0(r) := {a ∈ A∗ : min{γl min{rl R, c0} : al = c0}
≥ max{γl min{rl R, c0} : al = 0}}, (15.17)

or equivalently, an attack action a ∈ A∗ is optimal against r only if there exists a
permutation (la1 , . . . , l

a
L) of L such that

γla1 min{rla1 R, c0} ≥ · · · ≥ γlaL min{rlaL R, c0} (15.18)

and
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{l ∈ L : al = c0} ⊂ La
1 ∪ {la�A/c0
}, {l ∈ L : al = 0} ⊂ La

2 ∪ {la
A/c0�+1}

with
La
1 := {la1 , . . . , la
A/c0�}, La

2 := {la�A/c0
+1, . . . , l
a
L}.

If additionally (15.15) holds, then

β∗
a (r) = A∗

1(r) := {a ∈ A∗ : min{γl min{rl R, c0} : al = c0}
≥ max{γl min{rl R, c0} : al < c0}}, (15.19)

or equivalently, an attack action a ∈ A∗ is optimal against r if and only if there exists
a permutation (la1 , . . . , l

a
L) of L such that (15.18) holds and

{l ∈ L : al = c0} = La
1.

Proof Suppose there is an optimal attack action a∗ ∈ β∗
a (r)\A∗

0(r). Then there
are two links l1, l2 ∈ L such that a∗

l1
= c0, a∗

l2
= 0 and γl1 min{rl1R, c0} < γl2

min{rl2 R, c0}. We define an attack action ā by switching the attack rates on l1 and
l2, that is,

āl :=

⎧
⎪⎨

⎪⎩

a∗
l2
, l = l1,

a∗
l1
, l = l2,

a∗
l , l ∈ L\{l1, l2}.

Then the formula for attack cost in (15.14) implies

H(ā, r) − H(a∗, r) = γl1 min{rl1R, c0} − γl2 min{rl2 R, c0} < 0,

which contradicts the assumption that a∗ is optimal against r . Hence β∗
a (r) ⊂ A∗

0(r),
that is, (15.17) holds.

If additionally (15.15) holds, the same analysis with a∗
l2
< c0 shows that β∗

a (r) ⊂
A∗

1(r).Meanwhile, the formula for attack cost in (15.16) implies that all attack actions
from A∗

1(r) yield the same attack cost which is the sum of the L − 
A/c0� smallest
γl min{rl R, c0}. Hence β∗

a (r) = A∗
1(r), that is, (15.19) holds. �

In the reminder of this section, we investigate Stackelberg equilibrium routing
actions and Stackelberg routing costs for the nonzero-sum game (R,A∗, J, H),
assuming that all links have same capacity c0 and the attack priorities satisfy a con-
dition. We construct explicit formulae for a strong Stackelberg equilibrium routing
action and for weak ε Stackelberg routing actions with arbitrarily small ε > 0. Our
results shows that there is no weak Stackelberg equilibrium routing action unless γl
are the same for all links, in which case the strong Stackelberg equilibrium routing
action is also a weak one. In practice, a pessimistic router would either play the
weak Stackelberg equilibrium routing action when all γl are the same, or a weak ε
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Stackelberg routing action with a small ε when they are not, with the understanding
that there will be an ε penalty in the latter case.

First,we construct the strongStackelberg equilibrium routing action and the strong
Stackelberg routing cost.

Theorem 15.2 Consider the case of equal link capacities cl = c0 for all l ∈ L and
attack priorities γl such that

1/γl∑
l̄∈L 1/γl̄

<
c0 − arem

R
∀l ∈ L. (15.20)

For the game (R,A∗, J, H), there is a strong Stackelberg equilibrium routing action
r∗ ∈ R defined by

r∗
l := 1/γl∑

l̄∈L 1/γl̄
, l ∈ L, (15.21)

and the strong Stackelberg routing cost is given by

J ∗ := min
a∈β∗

a (r
∗)
J (r∗, a) = −

∑

l∈Lr
1

r∗
l R, (15.22)

where Lr
1 is a subset of L − 
A/c0� links l ∈ L with the largest r∗

l , that is, there
exists a permutation (lr1, . . . , l

r
L) of L such that

r∗
lr1

≥ · · · ≥ r∗
lrL
,

and
Lr
1 = {lr1, . . . , lrL−
A/c0�}.

If additionally the attack budget A ≥ c0, then r∗ defined by (15.21) is the unique
strong Stackelberg equilibrium routing action.

Before proving Theorem 15.2, we observe that the routing action r∗ defined by
(15.21) satisfies (15.15) with r∗ in place of r due to (15.20). Moreover, we have

γl min{r∗
l R, c0} = R∑

l̄∈L 1/γl̄
∀l ∈ L,

which combined with (15.19), implies

β∗
a (r

∗) = A∗. (15.23)

Therefore, if the router plays r∗, then all attack actions a ∈ A∗ will yield the same
attack cost

H∗ := H(a, r∗) = (L − 
A/c0�)R∑
l∈L 1/γl
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given by the formula for attack cost in (15.16).

Proof of Theorem 3 Clearly, r∗ defined by (15.21) satisfies r∗ ∈ R. Then the equal-
ity in (15.22) follows from (15.23) and the formula for routing cost in (15.16).

Consider an arbitrary r ∈ R such that r �= r∗, and let

L1 := {l ∈ L : rl < r∗
l }, L2 := {l ∈ L : rl ≥ r∗

l }.

Then
rl R < r∗

l R < c0 − arem ∀l ∈ L1 (15.24)

and

γl1rl1 <
1∑

l∈L 1/γl
≤ γl2rl2 ∀l1 ∈ L1,∀l2 ∈ L2. (15.25)

Note that (15.15) may not hold for r since min{rl R, c0} ≤ c0 − arem may not hold
for l ∈ L2. Consider an arbitrary optimal attack action a ∈ β∗

a (r) against r . Then
there are two possibilities.

1. If |L1| ≥ L − 
A/c0�, then from (15.17) and (15.25), we have {l ∈ L : al = 0} ⊂
L1. If (15.15) holds, then from (15.19) and (15.25) we have {l ∈ L : al < c0} ⊂
L1. Next, we show that even if (15.15) does not hold, the link l0(a) on which
al0(a) = arem ∈ (0, c0) still satisfies l0(a) ∈ L1. Indeed, suppose l0(a) ∈ L2. Then
the formula for attack cost in (15.14) implies

H(a, r) = γl0(a) min{rl0(a)R, c0 − arem} +
∑

l∈L:al=0

γlrl R.

Meanwhile, as |L1| ≥ L − 
A/c0�, there is at least one link l̄1 ∈ L1 on which
al̄1 = c0. We define an attack action ā by switching the attack rates on l0(a) and
l̄1, that is,

āl :=

⎧
⎪⎨

⎪⎩

arem, l = l̄1,

c0, l = l0(a),

al , l ∈ L\{l̄1, l0(a)}.

Then
H(ā, r) = γl̄1rl̄1R +

∑

l∈L:al=0

γlrl R < H(a, r),

where the inequality follows from (15.24) and (15.25), which contradicts the
assumption thata is optimal against r .Hence {l ∈ L : al < c0} ⊂ L1 holds regard-
less of whether (15.15) holds. Let L̄1 be a subset of L − 
A/c0� links l ∈ L1 with
the largest rl . Then the formula for routing cost in (15.14), together with (15.24),
implies

J (r, a) ≥ −
∑

l∈L̄1

rl R > −
∑

l∈L̄1

r∗
l R ≥ −

∑

l∈Lr
1

r∗
l R = J ∗.
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2. If |L1| < L − 
A/c0�, then from (15.17) and (15.25) we haveL1 ⊂ {l ∈ L : al <
c0}. In the following, we assume that there is a link l0(a) ∈ L2 on which al0(a) =
arem ∈ (0, c0), and let L̄2 be a subset of L − �A/c0
 − |L1| links l ∈ L2 with the
largest rl . (The cases where l0(a) ∈ L1 or l0(a) does not exist can be proved along
the same lines while removing the terms related to l0(a) and letting L̄2 be a subset
of L − 
A/c0� − |L1| links l ∈ L2 with the largest rl . In particular, if l0(a) ∈ L1

then (15.24) implies rl0(a)R < c0 − arem.) From (15.4b), we have

−
∑

l∈L1

(rl − r∗
l )R =

∑

l∈L2

(rl − r∗
l )R ≥ (

rl0(a) − r∗
l0(a)

)
R +

∑

l∈L̄2

(rl − r∗
l )R

≥ (
min{rl0(a)R, c0 − arem} − r∗

l0(a)R
) +

∑

l∈L̄2

(min{rl R, c0} − r∗
l R),

where the last inequality is strict if rl0(a)R > c0 − arem. Hence the formula for
routing cost in (15.14) implies

J (r, a) ≥ −min{rl0(a)R, c0 − arem} −
∑

l∈L1

rl R −
∑

l∈L̄2

min{rl R, c0}

= −(
min{rl0(a)R, c0 − arem} − r∗

l0(a)R
) −

∑

l∈L1

(rl − r∗
l )R

−
∑

l∈L̄2

(min{rl R, c0} − r∗
l R) − r∗

l0(a)R −
∑

l∈L1

r∗
l R −

∑

l∈L̄2

r∗
l R

≥ −r∗
l0(a)R −

∑

l∈L1

r∗
l R −

∑

l∈L̄2

r∗
l R

≥ −
∑

l∈Lr
1

r∗
l R = J ∗,

where the second inequality is strict if rl0(a)R > c0 − arem.
Next, we show that if the attack budget A ≥ c0, then we have J (r, a) > J ∗ even
if rl0(a)R ≤ c0 − arem. Indeed, as rl0(a)R ≤ c0 − arem, there is no congestion on
l0(a). Hence the routing and attack costs are given by the corresponding formulae
in (15.16), and thus similar analysis to the proof of Corollary 15.1 shows that
a ∈ A∗

1(r) defined in (15.19). Then as A ≥ c0, there is a link

l̄2 ∈ argmax
l∈L

γl min{rl R, c0}

on which al̄2 = c0. Moreover, we have rl̄2 > r∗
l̄2
as r �= r∗; thus l̄2 ∈ L2. Let L̄2 be

a subset of L − 
A/c0� − |L1| links l ∈ L2\{l̄2} with the largest rl . Then (15.4b)
implies
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−
∑

l∈L1

(rl − r∗
l )R >

∑

l∈L2\{l̄2}
(rl − r∗

l )R

≥
∑

l∈L̄2

(rl − r∗
l )R ≥

∑

l∈L̄2

(min{rl R, c0} − r∗
l R).

Hence the formula for routing cost in (15.16) implies

J (r, a) ≥ −
∑

l∈L1

rl R −
∑

l∈L̄2

min{rl R, c0}

= −
∑

l∈L1

(rl − r∗
l )R −

∑

l∈L̄2

(min{rl R, c0} − r∗
l R)

−
∑

l∈L1

r∗
l R −

∑

l∈L̄2

r∗
l R

> −
∑

l∈L1

r∗
l R −

∑

l∈L̄2

r∗
l R

≥ −
∑

l∈Lr
1

r∗
l R = J ∗.

In summary, we have established that

J ∗ = min
a∈β∗

a (r
∗)
J (r∗, a) ≤ min

a∈β∗
a (r)

J (r, a) ∀r �= r∗, (15.26)

thus r∗ is a strong Stackelberg equilibrium routing action and J ∗ is the strong Stack-
elberg routing cost for (R,A∗, J, H). If additionally the attack budget A ≥ c0, then
the inequality in (15.26) is strict; thus r∗ is the unique strong Stackelberg equilibrium
routing action.

Next, we establish that J ∗ defined in (15.22) is also the weak Stackelberg routing
cost for (R,A∗, J, H), by constructing a weak ε Stackelberg routing action for an
arbitrarily small ε > 0; see also [43, Sect. 6] for a related result for finite games with
mixed strategies.

Theorem 15.3 Consider the case of equal link capacities cl = c0 for all l ∈ L and
attack priorities γl such that (15.20) holds. For the game (R,A∗, J, H), we have

1. for an arbitrary ε > 0 such that

ε < min{(L − 
A/c0�) r∗
l , 
A/c0�((c0 − arem)/R − r∗

l )} ∀l ∈ L, (15.27)

where r∗ is the routing action defined by (15.21), there is a weak ε Stackelberg
routing action r ε ∈ R defined by
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r ε
l :=

{
r∗
l − ε/(L − 
A/c0�), l ∈ Lr

1,

r∗
l + ε/
A/c0�, l ∈ Lr

2,
(15.28)

where Lr
1 is a subset of L − 
A/c0� links l ∈ L with the largest r∗

l as in (15.22)
and Lr

2 := L\Lr
1, and

2. the weak Stackelberg routing cost is equal to the strong Stackelberg routing cost
J ∗ given by (15.22).

Proof The condition (15.27) ensures that r ε defined by (15.28) satisfies r ε ∈ R and

r ε
l <

c0 − arem
R

∀l ∈ L,

and thus (15.15) holdswith r ε in place of r .Moreover, combining (15.21) and (15.28)
yields

γl1r
ε
l1 <

1∑
l∈L 1/γl

< γl2r
ε
l2 ∀l1 ∈ Lr

1,∀l2 ∈ Lr
2.

Then (15.19) implies that the set of optimal attack actions is given by

β∗
a (r

ε) = {a ∈ A∗ : {l ∈ L : al = c0} = Lr
2}.

Hence the formula for routing cost in (15.16) implies

J (r ε, a) = −
∑

l∈Lr
1

r ε
l R = ε −

∑

l∈Lr
1

r∗
l R = J ∗ + ε ∀a ∈ β∗

a (r
ε).

As ε > 0 can be arbitrarily small, we have

J ∗ ≥ inf
r∈R

max
a∈β∗

a (r)
J (r, a).

Additionally, Theorem 15.2 implies

J ∗ = min
r∈R

min
a∈β∗

a (r)
J (r, a) ≤ inf

r∈R
max
a∈β∗

a (r)
J (r, a).

Hence
J ∗ = inf

r∈R
max
a∈β∗

a (r)
J (r, a),

that is, J ∗ is the weak Stackelberg routing cost and r ε is a weak ε Stackelberg routing
action for (R,A∗, J, H). �

Based on (15.23), all attack actions fromA∗ are optimal against the strong Stack-
elberg equilibrium routing action r∗ defined by (15.21). Hence r∗ cannot be a weak
Stackelberg equilibrium routing action unless all attack actions from A∗ also yield
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the same routing cost. Combining (15.21) and the formula for routing cost in (15.16),
we see that is the case if and only if the adversary has the same priority for all links.
Moreover, if the adversary has the same priority for all links, then (15.20) can be
replaced by a less restrictive condition; the proof is along the lines of that of Theo-
rem 15.2 and thus omitted here.

Corollary 15.2 Consider the case of equal link capacities cl = c0 for all l ∈ L and
attack priorities such that (15.20) holds. The routing action r∗ defined by (15.21)
is a weak Stackelberg equilibrium routing action for the game (R,A∗, J, H) if and
only if there is a constant γ0 ∈ (0, 1] such that

γl = γ0 ∀l ∈ L. (15.29)

Moreover, if (15.29) holds, then (15.20) can be replaced by

R < Lc0

and r∗ defined by (15.21), that is,

r∗
l = 1/L , l ∈ L,

is still both a strong Stackelberg equilibrium routing action and a weak one.

15.5 Mitigating Attacks via Learning

We now focus our attention on scenarios where the “adversary” may be driven by
a cost more general than either (15.3) or (15.9) and, in fact, the router does not
know the attack cost function H or even the attack action set A, leading to a game
with incomplete information. In this scenario, the attack strategy is a best response
function f ∗ : R → A that satisfies

f ∗(r) ∈ βa(r) ∀r ∈ R,

but the function f ∗ (and the set-valued function βa as well) is unknown to the router.
Since the router cannot predict the attack action f ∗(r) or the routing cost J (r, f ∗(r))
associated with a specific routing action r , it constructs a prediction of J (r, f ∗(r))
via a learning-based approach that consists of two components:

1. a neural network trained to construct a prediction Ĵ (r) of the actual routing cost
J (r, f ∗(r)) that results from a routing action r ∈ R, and

2. a gradient descent algorithm used to minimize the predicted routing cost Ĵ (r).
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15.5.1 Predicting the Routing Cost

We train a neural network
y = NN(θ, r)

to predict the routing cost J (r, f ∗(r)) that results from a routing action r ∈ R, where
θ denotes the parameters of the neural network. The input to the neural network is the
routing action r ; thus there are L neurons in the input layer. Based on this input, the
neural network predicts the actual user rates u as defined by (15.1) and the resulting
routing cost J (r, f ∗(r)) as defined by (15.2); thus there are L + 1 neurons in the
output layer. We use n fully connected hidden layers, each of which consists of m
rectified linear units (ReLU). Therefore, the input xi ∈ R

m to the i-th hidden layer
is given by

xi = ReLU(θiweightx
i−1 + θibias), i ∈ {1, . . . , n},

where x0 = r ∈ R is the input and ReLU is the rectifier function

ReLU(x) = max{x, 0},

in which the maximum is taken in each scalar component. The output of the neural
network y ∈ R

L+1 is given by

y = θn+1
weightx

n + θn+1
bias .

The neural network is visualized in Fig. 15.1. It is trained using a history of past
routing actions and the corresponding values of actual user rates and routing costs. It
is important to highlight that this neural network can be trainedwithout observing the
attack actions a and with no input of the total desired transmission rate of legitimate
traffic R.

15.5.2 Minimizing the Predicted Routing Cost

After training, the router adjusts the routing action r ∈ R based on a gradient descent
algorithm to minimize the predicted routing cost Ĵ (r) = yL+1, which is the last
component of the output y = NN(θ, r) of the neural network. To specify the gradient
descent algorithm, we recall the following notions and basic properties from convex
analysis; for more details, see, e.g., [46, Sect. 6] or [47, Sect. 5.1].

For a closed convex set C ⊂ R
n and a point v ∈ R

n , we denote by [v]C the pro-
jection of v onto C, that is,

[v]C := argmin
w∈C

‖w − v‖.
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Fig. 15.1 The neural network used to predict the routing cost. There are L neurons in the input
layer, L + 1 neurons in the output layer, and n fully connected hidden layers each with m ReLU
neurons

The projection [v]C satisfies [v]C = v if v ∈ C. For a convex set S ⊂ R
n and a point

x ∈ S, we denote by TS(x) the tangent cone to S at x , that is,

TS(x) := {h(z − x) : z ∈ S, h > 0}.

The set TS(x) is closed and convex, and satisfy TS(x) = R
n if x ∈ S\∂S.

The gradient descent algorithm used to minimize the predict routing cost Ĵ (r) =
yL+1 is

ṙ = [−λ∇r Ĵ (r)
]
TR(r)

= [−λ∇xn yL+1∇xn−1xn · · · ∇x0x
1
]
TR(r)

, (15.30)

where λ > 0 is a preselected constant, and the projection [·]TR(r) onto the tangent
cone TR(r) is used to guarantee that the routing action r remains inside the routing
action setR. Note that it is particularly convenient to use a gradient descent method
in our approach, as the gradients∇xn yL+1,∇xn−1xn ,…, and∇x0x1 are readily available
from backpropagation during training.

15.6 Simulation Study

In this section, we present simulation results for the learning-based approach
described in Sect. 15.5 against the malicious adversary described in Sect. 15.4.1,
for networks with up to 10 parallel links.



15 Modeling and Mitigating Link-Flooding Distributed Denial-of-Service Attacks … 453

Fig. 15.2 Simulation results for a network of L = 2 links and an attack priority vector γ = 12, using
m = 16ReLUneurons in each hidden layer. The actual and predicted routing costs J and Ĵ converge
to −0.50 and −0.49, respectively, where the former is within 0.60% from the weak Stackelberg
routing cost J ∗ = −0.5. The prediction error Ĵ − J converges to 0.01, which is within 1.04% from
J (T ). The attack cost H converges to 0.50. The routing action r converges to (0.50, 0.50), which
is close to the weak Stackelberg equilibrium routing action r∗ = 12/2

Fig. 15.3 Actual and
predicted routing cost
functions J (r, f ∗(r)) and
Ĵ (r) for the simulation in
Fig. 15.2
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Fig. 15.4 Simulation results for a network with L = 2 links and the attack priority vector γ =
(2/3, 1), using m = 32 ReLU neurons in each hidden layer. The actual and predicted routing costs
J and Ĵ converge to −0.60 and −0.58, respectively, where the former is within 0.77% from the
weak Stackelberg routing cost J ∗ = −3/5. The prediction error Ĵ − J converges to 0.02, which is
within 3.40% from J (T ). The attack cost H converges to 0.40. The routing action r converges to
(0.60, 0.40), which is close to the strong Stackelberg equilibrium routing action r∗ = (3/5, 2/5)

Fig. 15.5 Actual and
predicted routing cost
functions J (r, f ∗(r)) and
Ĵ (r) for the simulation in
Fig. 15.4
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Fig. 15.6 Simulation results for a network of L = 3 links and an attack priority vector γ = 13, using
m = 16ReLUneurons in each hidden layer. The actual and predicted routing costs J and Ĵ converge
to −0.48 and −0.47, respectively, where the former is within 3.52% from the weak Stackelberg
routing cost J ∗ = −1/2. The prediction error Ĵ − J converges to 0.02, which is within 3.39% from
J (T ). The attack cost H converges to 0.48. The routing action r converges to (0.35, 0.32, 0.33),
which is close to the weak Stackelberg equilibrium routing action r∗ = 13/3

Fig. 15.7 Actual and predicted routing cost functions J (r, f ∗(r)) and Ĵ (r) for the simulation in
Fig. 15.6
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Fig. 15.8 Simulation results for a network of L = 3 links and an attack priority vector γ =
(1, 0.5, 0.5), using m = 32 ReLU neurons in each hidden layer. The actual and predicted rout-
ing costs J and Ĵ converge to −0.56 and −0.54, respectively, where the former is within 6.26%
from the weak Stackelberg routing cost J ∗ = −3/5. The prediction error Ĵ − J converges to 0.02,
which is within 3.85% from J (T ). The attack cost H converges to 0.42. The routing action r
converges to (0.30, 0.37, 0.33), which is close to the strong Stackelberg equilibrium routing action
r∗ = (3/10, 2/5, 3/10)

Fig. 15.9 Actual and predicted routing cost functions J (r, f ∗(r)) and Ĵ (r) for the simulation in
Fig. 15.8
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(a) Actual and predicted routing costs J, Ĵ (b) Prediction error Ĵ −J

(c) Attack cost H (d) Routing action r

Fig. 15.10 Simulation results for a network of L = 4 links and an attack priority vector γ =
14, using m = 32 ReLU neurons in each hidden layer. The actual and predicted routing costs J
and Ĵ converge to −0.96 and −0.92, respectively, where the former is within 4.27% from the
weak Stackelberg routing cost J ∗ = −1. The prediction error Ĵ − J converges to 0.04, which is
within 3.85% from J (T ). The attack cost H converges to 0.96. The routing action r converges to
(0.24, 0.27, 0.25, 0.24), which is close to the weak Stackelberg equilibrium routing action r∗ =
14/4

In the simulation, all links have the same capacity c0 = 1, the total desired user
rate R = L/2, and the attack budget A = 
L/2�. For cases where the adversary has
the same priority for all links, we use the attack priority vector γ = 1L ; otherwise
γ ∈ (0, 1]L will be specified.

In this problem, a router that mistakenly believes the adversary is playing a con-
stant attack action will regret its choice nomatter which routing action is played; thus
there is no Nash equilibrium for the game (R,A∗, J, H) [17, p. 106]. The results
in Sect. 15.4.1 show that there is a strong Stackelberg equilibrium routing action r∗
given by (15.21) but not necessarily a weak Stackelberg equilibrium routing action,
while the strong and weak Stackelberg routing costs are both J ∗ given by (15.22).
However, even if the adversary always plays an optimal attack action that is worst
for the router, the router is able to approach the weak Stackelberg routing cost J ∗
using a weak ε Stackelberg routing action r ε closed to r∗ given by (15.28).

In each simulation, a neural network is constructed using Python 3.7.7 and
PyTorch 1.3.1. It has n = 3 fully connected hidden layers, each with m ReLU neu-
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Fig. 15.11 Simulation results for a network of L = 4 links and an attack priority vector γ =
(0.5, 1, 1, 1), using m = 64 ReLU neurons in each hidden layer. The actual and predicted routing
costs J and Ĵ converge to −1.15 and −1.12, respectively, where the former is within 3.79% from
the weak Stackelberg routing cost J ∗ = −6/5. The prediction error Ĵ − J converges to 0.04, which
is within 3.05% from J (T ). The attack cost H converges to 0.78. The routing action r converges
to (0.38, 0.21, 0.20, 0.21), which is close to the strong Stackelberg equilibrium routing action
r∗ = (2/5, 1/5, 1/5, 1/5)

rons. One of the focus for this simulation study is to construct the predicted routing
cost Ĵ (r) using a small set of training data. Therefore, we train the neural network
using only 500 samples with randomly generated routing actions (sampled from the
101-st to the 600-th unit of time). The neural network is trained for 2000 epochs
for each simulation, with the batch size 80 and the learning rate 0.001. After train-
ing, the gradient algorithm (15.30) is applied to minimize the predicted routing
cost Ĵ (r) generated by the neural network, until the T = 10000-th unit of time.
The constant in (15.30) is set by λ = 0.001. The simulation results are shown in
Figs. 15.2, 15.3, 15.4, 15.5, 15.6, 15.7, 15.8, 15.9, 15.10, 15.11, 15.12, and 15.13. In
Figs. 15.2, 15.4, 15.6, 15.8, 15.10, 15.11, 15.12, and 15.13, the horizontal axis is in
×104 units of time.
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(a) Actual and predicted routing costs J, Ĵ (b) Prediction error Ĵ − J

(c) Attack cost H (d) Routing action r

Fig. 15.12 Simulation results for a network of L = 6 links and an attack priority vector γ =
16, using m = 64 ReLU neurons in each hidden layer. The actual and predicted routing costs J
and Ĵ converge to −1.46 and −1.38, respectively, where the former is within 2.58% from the
weak Stackelberg routing cost J ∗ = −3/2. The prediction error Ĵ − J converges to 0.08, which
is within 5.57% from J (T ). The attack cost H converges to 1.46. The routing action r converges
to (0.16, 0.17, 0.16, 0.17, 0.18, 0.16), which is close to the weak Stackelberg equilibrium routing
action r∗ = 16/6

15.6.1 Discussion

In Table15.1, we summarize the simulation parameters and final results at time T ,
including the number of links L , the attack priority vector γ, the number of neurons
in hidden layers m, the strong Stackelberg equilibrium routing action r∗ defined by
(15.21), the weak Stackelberg routing cost J ∗ defined by (15.22), the final actual
and predicted routing costs J (T ) := J (r(T ), f ∗(r(T ))) and Ĵ (T ) := Ĵ (r(T )), the
relative difference |J (T )/J ∗ − 1|, the percentage prediction error | Ĵ (T )/J (T ) − 1|,
and the corresponding figures.

Based on Table15.1 and Figs. 15.2–15.13, we make the following observations:

1. Even with a small set of training data (500 samples), our learning-based approach
is able to provide a routing cost J (T ) that is reasonably close to the weak Stack-
elberg routing cost J ∗.
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Fig. 15.13 Simulation results for a network of L = 10 links and an attack priority vector γ = 110,
using m = 128 ReLU neurons in each hidden layer. The actual and predicted routing costs J
and Ĵ converge to −2.30 and −2.19, respectively, where the former is within 7.94% from the
weak Stackelberg routing cost J ∗ = −5/2. The prediction error Ĵ − J converges to 0.11, which is
within 4.96% from J (T ). The attack cost H converges to 2.30. The routing action r converges to
(0.10, 0.11, 0.11, 0.10, 0.09, 0.11, 0.10, 0.09, 0.09, 0.09), which is close to the weak Stackelberg
equilibrium routing action r∗ = 110/10

2. Figures15.5 and 15.9 demonstrate that our neural networks succeed at approxi-
mating the routing cost in spite of strong discontinuities in the function J (r, f ∗(r))
that result from non-unique optimal attack actions against a strong Stackel-
berg equilibrium routing action. However, this is clearly a challenge for high-
dimensional problems and motivates the need for further research.

3. In practice, the selection of the routing action r only cares about minimizing
the last component of the neural network’s output (the predicted routing cost
Ĵ (r) above). However, we found that the performance of the neural network
improved significantly when it was trained to also predict the actual user rates u.
Our conjecture is that the additional dimensions in training data force the hidden
layers to “respond” to the actual user rates and thus provides a more persistent
structure for the neural network. This phenomenon will also be a topic for future
research.
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Table 15.1 Simulation parameters and results
L γ m r∗ J ∗ J (T ) Ĵ (T )

∣∣∣ J (T )
J∗ − 1

∣∣∣
∣∣∣ Ĵ (T )
J (T ) − 1

∣∣∣ Figs.

2 12 16 1
2 12 − 1

2 −0.50 −0.49 0.60% 1.04% 15.2, 15.3

2
( 2
3 , 1

)
32

( 3
5 ,

2
5

) − 3
5 −0.60 −0.58 0.77% 3.40% 15.4, 15.5

3 13 16 1
3 13 − 1

2 −0.48 −0.47 3.52% 3.39% 15.6, 15.7

3
(
1, 3

4 , 1
)

32
( 3
10 ,

2
5 ,

3
10

) − 3
5 −0.56 −0.54 6.26% 3.85% 15.8, 15.9

4 14 32 1
4 14 −1 −0.96 −0.92 4.27% 3.85% 15.10

4
( 1
2 , 1, 1, 1

)
64

( 2
5 ,

1
5 ,

1
5 ,

1
5

) − 6
5 −1.15 −1.12 3.79% 3.05% 15.11

6 16 64 1
6 16 − 3

2 −1.46 −1.38 2.58% 5.57% 15.12

10 110 128 1
10 110 − 5

2 −2.30 −2.19 7.94% 4.96% 15.13

15.7 Conclusion

We formulated the mitigation of link-flooding DDoS attacks as a routing problem
among parallel links. A Stackelberg game model was constructed to address the
challenge that the adversary can observe the routing strategy before assigning attack
traffic. For a general class of adversaries, we characterized an optimal attack that
belongs to a finite set, and constructed explicit formulae for Stackelberg equilibria
and costs for a special class of networks. For the more general case of unknown
attack cost and capacity, we proposed a learning-based approach that predicts the
routing cost using a neural network and then minimizes the predicted routing cost
via projected gradient descent. The effectiveness of our approach was demonstrated
through a simulation study.

A future research direction is to extend our results to scenarios where the attack
objective is partially known and incorporates the additional information about attack
to our learning-based approach. For example, if the attack was known to belong to
the finite set A∗ defined in (15.12), how should the router adjust the neural network
to improve its efficiency? Other future research topics include to test our approach in
more complex networks and to generalize our results to the case of multiple routers
and/or adversaries.
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