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Abstract— We study a notion of topological entropy for
switched systems, formulated in terms of the minimal number
of initial states needed to approximate all initial states within a
finite precision. This paper focuses on the topological entropy
of switched linear systems with pairwise commuting matrices.
First, we prove there exists a simultaneous change of basis
under which each of the matrices can be decomposed into a
diagonal part and a nilpotent part, and all the diagonal and
nilpotent parts are pairwise commuting. Then a formula for the
topological entropy is established in terms of the component-
wise averages of the eigenvalues, weighted by the active time
of each mode, which indicates that the topological entropy is
independent of the nilpotent parts above. We also present how
the formula generalizes known results for the non-switched case
and the case with simultaneously diagonalizable matrices, and
construct more general but more conservative upper bounds for
the entropy. A numerical example is provided to demonstrate
properties of the formula and the upper and lower bounds for
the topological entropy.

I. INTRODUCTION

In systems theory, topological entropy describes the in-
formation accumulation needed to approximate trajectories
within a finite precision, or the complexity growth of a
system acting on sets with finite measure. The latter idea
corresponds to Kolmogorov’s original definition in [1], and
shares a striking resemblance to Shannon’s information en-
tropy [2]. Adler first defined topological entropy as an ex-
tension of Kolmogorov’s metric entropy, quantifying a map’s
expansion by the minimal cardinality of subcover refinements
[3]. An alternative definition using the maximal number of
trajectories separable within a finite precision was introduced
by Bowen [4] and independently Dinaburg [5]. Equivalence
between the two definitions above was established in [6].
Most results on topological entropy are for time-invariant
systems, as time-varying dynamics introduce complexities
which require new methods to understand [7], [8]. This
work on the topological entropy of switched linear systems
provides an initial study on some of these complexities.

Entropy has played a prominent role in control theory,
in which information flow appears between sensors and
actuators for maintaining or inducing desired properties.
Nair et al. first introduced topological feedback entropy
for discrete-time systems [9], following the construction in
[3]. Their definition extended the classical entropy notions,
notably in allowing for non-compact state spaces, but still
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described the uncertainty growth as time evolves. Colonius
and Kawan later proposed a notion of invariance entropy for
continuous-time systems [10], which is closer in spirit to
the trajectory-counting formulation in [4], [5]. In [11], the
two notions above were summarized and an equivalence was
established between them. The results of [10] were extended
from set invariance to exponential stabilization in [12].

This paper studies the topological entropy of switched
linear systems. Switched systems have become a popular
topic in recent years (see, e.g., [13] and references therein).
It is well-known that, in general, a switched system does
not inherit stability properties of the individual modes. In
[14], it was shown that a switched linear system generated
by a finite family of pairwise commuting Hurwitz matrices is
globally uniformly exponentially stable, which motivates us
to study the topological entropy of switched linear systems
with pairwise commuting matrices.

Our interest in studying entropy of switched systems is
strongly motivated by its relation to the data-rate require-
ments in control systems. For a linear time-invariant control
system, it has been shown that the minimal data rate for sta-
bilization equals the topological entropy in open-loop [15]–
[17]. For switched systems, however, neither the minimal
data rate nor the topological entropy is well-understood.
Sufficient data rates for feedback stabilization of switched
linear systems were established in [18], [19]. In [20], the
notion of estimation entropy from [21] was extended to
switched systems to formulate similar data-rate conditions.
The paper [22] introduced a notion of topological entropy
for switched systems, and established formulae and bounds
for the topological entropy of switched linear systems with
diagonal, triangular, and general matrices, which also serves
as the basis for this work.

The main contribution of this paper is the construction
of a formula and bounds for the topological entropy of
switched linear systems with pairwise commuting matrices.
In Section II, we present the notion of topological entropy for
switched systems, define switching-related quantities such as
the active time of each mode, which prove to be useful in
calculating the topological entropy, and recall key results on
the topological entropy of general switched linear systems.
In Section III, we study the topological entropy of switched
linear systems with pairwise commuting matrices. First, we
prove there exists a simultaneous change of basis under
which each of the matrices can be decomposed into a diago-
nal part and a nilpotent part, and all the diagonal and nilpo-
tent parts are pairwise commuting. Then a formula for the
topological entropy is established in terms of the component-
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wise active-time-weighted averages of the eigenvalues. We
also present how the formula generalizes known results for
the non-switched case and the case with simultaneously
diagonalizable matrices, and derive more general but more
conservative upper bounds for the entropy. Properties of the
formula and the upper and lower bounds for the topological
entropy are summarized in a remark and demonstrated via
a numerical example. Section IV summarizes the paper and
remarks on future research directions.

Notations: By default, all logarithms are natural loga-
rithms. Let R+ := [0,∞) and N := {0, 1, . . .}. For a
scalar a ∈ C, denote by Re(a) its real part. For a vector
v ∈ Cn, denote by vi its i-th scalar component and write
v = (v1, . . . , vn). For a matrix A ∈ Cn×n, denote by
spec(A) and tr(A) its spectrum and trace, respectively. For
a set E ⊂ Cn, denote by |E| its cardinality. Denote by |a|
the absolute value of a scalar a, by ‖v‖∞ := maxi |vi| the
∞-norm of a vector v, and by ‖A‖∞ := maxi

∑
j |aij | the

(induced) ∞-norm of a matrix A = [aij ]. We call a set of
pairwise commuting matrices a commuting family.

II. PRELIMINARIES

A. Entropy definitions

Consider a family of continuous-time dynamical systems

ẋ = fp(x), p ∈ P (1)

with the state x ∈ Rn, in which each system is labeled by
an index p from a finite index set P , and all the functions
fp : Rn → Rn are locally Lipschitz. We are interested in the
corresponding switched system defined by

ẋ = fσ(x), x(0) ∈ K, (2)

where σ : R+ → P is a right-continuous, piecewise constant
switching signal, and K ⊂ Rn is a compact set of initial
states with a nonempty interior. The system with index p
in (1) is called the p-th mode, or mode p, of the switched
system (2), and σ(t) ∈ P is called the active mode at time t.
Denote by ξσ(x, t) the solution of (2) at time t with switching
signal σ and initial state x. For fixed σ and x, the trajectory
ξσ(x, ·) is absolutely continuous and satisfies the differential
equation (2) away from discontinuities of σ, which are called
switching times, or simply switches. We assume that there is
at most one switch at each time, and finitely many switches
on each finite time interval (i.e., the set of switches contains
no accumulation point).

Let ‖·‖ be some chosen norm on Rn and the corresponding
induced norm on Rn×n. Fix an arbitrary switching signal σ.
Given a time horizon T ≥ 0 and a radius ε > 0, we define
the following open ball in K with center x:

Bfσ (x, ε, T ) :=
{
x′ ∈ K : max

t∈[0,T ]
‖ξσ(x′, t)−ξσ(x, t)‖ < ε

}
.

(3)
We say a finite set of points E ⊂ K is (T, ε)-spanning if

K =
⋃
x̂∈E

Bfσ (x̂, ε, T ),

or equivalently, for each x ∈ K, there is a point x̂ ∈ E such
that ‖ξσ(x, t) − ξσ(x̂, t)‖ < ε for all t ∈ [0, T ]. Denote by
S(fσ, ε, T,K) the minimal cardinality of a (T, ε)-spanning
set, or equivalently, the cardinality of a minimal (T, ε)-
spanning set. The topological entropy of the switched system
(2) with initial set K and switching signal σ is defined in
terms of the exponential growth rate of S(fσ, ε, T,K) by

h(fσ,K) := lim
ε↘0

lim sup
T→∞

1

T
logS(fσ, ε, T,K). (4)

The entropy h(fσ,K) is nonnegative as S(fσ, ε, T,K) is
nondecreasing in T , nonincreasing in ε, and at least 1. For
brevity, we will refer to h(fσ,K) simply as the (topological)
entropy of the switched system (2) in the rest of the paper.
Remark 1. In light of [23, p. 109, Prop. 3.1.2], the value of
h(fσ,K) is the same for all metrics defining the same topol-
ogy. Hence the norm ‖ · ‖ can be arbitrary. For convenience
and concreteness, we take ‖ ·‖ to be the∞-norm of a vector
or the (induced) ∞-norm of a matrix.

Next, we introduce an equivalent definition for the entropy
of the switched system (2). With T and ε given as before,
we say a finite set of points E ⊂ K is (T, ε)-separated if

x̂′ /∈ Bfσ (x̂, ε, T ) ∀ x̂, x̂′ ∈ E

or equivalently, for all distinct points x̂, x̂′ ∈ E, there is
a time t ∈ [0, T ] such that ‖ξσ(x̂′, t) − ξσ(x̂, t)‖ ≥ ε.
Denote by N(fσ, ε, T,K) the maximal cardinality of a
(T, ε)-separated set, or equivalently, the cardinality of a
maximal (T, ε)-separated set, which is also nondecreasing
in T , nonincreasing in ε, and at least 1. The entropy of (2)
can be equivalently formulated in terms of the exponential
growth rate of N(fσ, ε, T,K) as follows; the proof is along
the lines of [23, p. 110] and thus omitted here.

Proposition 1. The topological entropy of the switched
system (2) satisfies

h(fσ,K) = lim
ε↘0

lim sup
T→∞

1

T
logN(fσ, ε, T,K). (5)

Remark 2. In light of [23, pp. 109–110], for a time-invariant
system ẋ = f(x), the value of h(f,K) remains the same
if the limit suprema in (4) and (5) are replaced with limit
infima. However, this is not the case for a time-varying
system, for which the subadditivity required in the proof of
[23, p. 109, Lemma 3.1.5] does not necessarily hold.

B. Active time, active rates, and weighted averages
In this subsection, we defined several switching-related

quantities which will be useful in calculating the entropy of
switched linear systems.

For a switching signal σ, we define the active time of each
mode over an interval [0, t] by

τp(t) :=

∫ t

0

1p(σ(s)) ds, p ∈ P (6)

with the indicator function

1p(σ(s)) :=

{
1, σ(s) = p,

0, σ(s) 6= p.
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Fig. 1. A switching signal σ∗ with converging set-points: the sum
of the active rates ρ1+ρ2 = 1 at all times, whereas both asymptotic
active rates ρ̂1 = ρ̂2 = 1.

We also define the active rate of each mode over [0, t] by

ρp(t) := τp(t)/t, p ∈ P (7)

with ρp(0) := 1p(σ(0)), and the asymptotic active rate of
each mode by

ρ̂p := lim sup
t→∞

ρp(t), p ∈ P. (8)

Clearly, the active times τp(t) ≥ 0 are nondecreasing in t
and satisfy

∑
p∈P τp(t) = t for all t ≥ 0; the active rates

ρp(t) ∈ [0, 1] and satisfy
∑
p∈P ρp(t) = 1 for all t ≥ 0.

In contrast, due to the limit supremum in (8), it is possible
that

∑
p∈P ρ̂p > 1 for the asymptotic active rates ρ̂p, as

demonstrated in the following example.

Example 1. Consider the index set P = {1, 2} and the
switching signal σ∗ constructed as follows1:
• SWITCHING SIGNAL σ∗ WITH CONVERGING SET-POINTS:

Let t1 := 1. For k ≥ 1, set t2k := min{t > t2k−1 :
ρ2(t) ≥ 1 − 2−2k} and t2k+1 := min{t > t2k :
ρ1(t) ≥ 1 − 2−(2k+1)}. Simple calculation yields tk =
2k
∏k−1
l=1 (2l − 1) for k ≥ 2, and the asymptotic active

rates ρ̂1 = ρ̂2 = lim supk→∞ 1− e−2k = 1.
The switching signal σ∗, active rates ρ1 and ρ2, and asymp-
totic active rates ρ̂1 and ρ̂1 are plotted in Fig. 1 above (as
the intervals between consecutive switches grow superexpo-
nentially, logarithmic scale is used for the long-range plot).

Given a family of scalars {ap ∈ R : p ∈ P}, we define
the asymptotic weighted average by

â := lim sup
t→∞

∑
p∈P

apρp(t) = lim sup
t→∞

1

t

∑
p∈P

apτp(t), (9)

and the maximal weighted average over [0, T ] by

ā(T ) :=
1

T
max
t∈[0,T ]

∑
p∈P

apτp(t). (10)

1In all examples, we denote by t1 < t2 < · · · the sequence of switching
times and set σ = 1 on [t2k, t2k+1) and σ = 2 on [t2k+1, t2k+2) with
t0 := 0.

Lemma 1. The asymptotic weighted average â and maximal
weighted average ā satisfy

lim sup
T→∞

ā(T ) = max{â, 0}. (11)

Proof. See Appendix A.

C. Entropy of switched linear systems

In this subsection, we recall some known results on the
topological entropy of the switched linear system

ẋ = Aσx, x(0) ∈ K (12)

with a family of matrices {Ap ∈ Rn×n : p ∈ P}. Thinking
of matrices as linear operators, we denote by h(Aσ,K) the
entropy of (12).

First, it has been proved in [22] that the entropy h(Aσ,K)
is the same for all initial sets K.

Proposition 2 ([22, Prop. 2]). The topological entropy of the
switched linear system (12) is independent of the choice of
the initial set K.

Following Proposition 2, we omit the initial set K and
denote by h(Aσ) the entropy of (12). For convenience and
concreteness, we take K to be the closed unit hypercube
(recall that ‖ · ‖ is the ∞-norm) at the origin, that is, K :=
{x ∈ Rn : ‖x‖ ≤ 1}, in the following analysis.

Second, the entropy h(Aσ) satisfies the following upper
and lower bounds:

Proposition 3 ([22, Th. 4]). The topological entropy of the
switched linear system (12) is upper bounded by

h(Aσ) ≤ lim sup
t→∞

∑
p∈P

n‖Ap‖ρp(t) (13)

and lower bounded by

h(Aσ) ≥ max

{
lim sup
t→∞

∑
p∈P

tr(Ap)ρp(t), 0

}
(14)

with the active rates ρp defined by (7).

III. ENTROPY OF SWITCHED LINEAR SYSTEMS WITH
PAIRWISE COMMUTING MATRICES

The main objective of this paper is to examine the entropy
of the switched linear system (12) for the case where {Ap :
p ∈ P} is a commuting family.

First, we recall the following result from linear algebra:

Proposition 4 (Jordan–Chevalley decomposition [24, p. 17]).
For each matrix A, there exist polynomials f and g, without
constant term, such that f(A) is a diagonalizable matrix,
g(A) is a nilpotent matrix, and2

A = f(A) + g(A).

Using the Jordan–Chevalley decomposition, we show that
there exists a (possibly complex) simultaneous change of
basis under which every matrix Ap can be written as the

2This result is also known as the S–N decomposition, where f(A) and
g(A) are called the semisimple part and the nilpotent part, respectively.
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sum of a diagonal matrix and a nilpotent matrix, and all the
diagonal and nilpotent matrices are pairwise commuting.

Proposition 5. For the commuting family {Ap : p ∈ P},
there exists an invertible matrix Γ ∈ Cn×n such that

ΓApΓ
−1 = Dp +Np ∀ p ∈ P,

where all Dp ∈ Cn×n are diagonal matrices, all Np ∈
Cn×n are nilpotent matrices, and {Dp, Np : p ∈ P} is a
commuting family.

Proof. First, for each p ∈ P , the Jordan–Chevalley decom-
position implies there exist polynomials fp and gp such that
fp(Ap) is a diagonalizable matrix, gp(Ap) is a nilpotent
matrix, and

Ap = fp(Ap) + gp(Ap).

Next, as fp(Ap) and gp(Ap) are polynomials of Ap, they
commute with all matrices that commute with Ap [25, p. 276,
Th. 4.4.19]. Therefore, {fp(Ap), gp(Ap) : p ∈ P} is a
commuting family. In particular, the subset {fp(Ap) : p ∈
P} is a commuting family of diagonalizable matrices. Hence
there exists an invertible matrix Γ ∈ Cn×n such that

Dp := Γfp(Ap)Γ
−1, p ∈ P

are all diagonal matrices [26, p. 52, Th. 1.3.19]. Moreover,
as changing the basis preserves both matrix nilpotency and
commutativity, it follows that

Np := Γgp(Ap)Γ
−1, p ∈ P.

are all nilpotent matrices, and {Dp, Np : p ∈ P} is a
commuting family.

In view of Proposition 5, we assume, without loss of
generality, that every matrix in the commuting family {Ap :
p ∈ P} satisfes Ap = Dp + Np with a diagonal matrix
Dp := diag(a1

p, . . . , a
n
p ) ∈ Cn×n, that is, aip is the i-th

diagonal entry of Dp, and a nilpotent matrix Np ∈ Cn×n,
and that {Dp, Np : p ∈ P} is a commuting family. Then
(12) becomes the switched linear system in Cn defined by

ẋ = (Dσ +Nσ)x, x(0) ∈ K (15)

with the commuting family {Dp, Np : p ∈ P}.
In the following theorem, we establish a formula for the

entropy h(Dσ +Nσ) of (15).

Theorem 6. The topological entropy of the switched linear
system with pairwise commuting matrices (15) satisfies

h(Dσ +Nσ) = lim sup
T→∞

n∑
i=1

āi(T ) (16)

with the component-wise maximal weighted averages over
[0, T ] defined by

āi(T ) :=
1

T
max
t∈[0,T ]

∑
p∈P

Re(aip)τp(t) ≥ 0, i = 1, . . . , n,

where the active times τp are defined by (6).

In particular, (16) implies that the entropy h(Dσ + Nσ)
is independent of the nilpotent part of (15). To prove The-
orem 6, we first formulate an estimate for the effect of the
nilpotent matrices Np.

Lemma 2. Consider the commuting family of nilpotent
matrices {Np : p ∈ P}. For each δ > 0, there is a constant
cδ > 0 such that for all v ∈ Cn,

c−1
δ e−δt‖v‖ ≤

∥∥∥e∑p∈P Npτp(t)v
∥∥∥ ≤ cδeδt‖v‖ (17)

for all t ≥ 0 with the active times τp defined by (6).

Proof. See Appendix B.

Proof of Theorem 6. For all initial states x, x′ ∈ K, as
{Dp, Np : p ∈ P} is a commuting family, the corresponding
solutions of (15) at time t with switching signal σ satisfy

‖ξσ(x′, t)− ξσ(x, t)‖

=
∥∥∥e∑p∈P(Dp+Np)τp(t)(x′ − x)

∥∥∥
=
∥∥∥e∑p∈P Npτp(t)e

∑
p∈P Dpτp(t)(x′ − x)

∥∥∥.
Given a radius ε > 0, Lemma 2 with δ = ε and v =

e
∑
p∈P Dpτp(t)(x′ − x) implies there is a constant cε > 0

such that

c−1
ε e−εt

∥∥∥e∑p∈P Dpτp(t)(x′ − x)
∥∥∥

≤ ‖ξσ(x′, t)− ξσ(x, t)‖

≤ cεeεt
∥∥∥e∑p∈P Dpτp(t)(x′ − x)

∥∥∥,
in which∥∥∥e∑p∈P Dpτp(t)(x′−x)

∥∥∥ = max
i=1,...,n

e
∑
p∈P Re(aip)τp(t)|x′i−xi|

as Dp are diagonal matrices. Define η̄i : R+ → R+ for
i = 1, . . . , n by

η̄i(T ) := max
t∈[0,T ]

∑
p∈P

Re(aip)τp(t).

Then for all T ′ ≥ 0,

c−1
ε e−εT

′
max

i=1,...,n
eη̄i(T

′)|x′i − xi|

≤ max
t∈[0,T ′]

‖ξσ(x′, t)− ξσ(x, t)‖

≤ cεeεT
′

max
i=1,...,n

eη̄i(T
′)|x′i − xi|. (18)

Fix a time horizon T ≥ 0. First, consider the grid G(θ)
defined by

G(θ) := {(k1θ1, . . . , knθn) ∈ K : k1, . . . , kn ∈ Z} (19)

with the vector θ = (θ1, . . . , θn) defined by

θi := e−εT e−η̄i(T )ε/cε, i = 1, . . . , n. (20)

Recall that we take the initial set to be K := {x ∈ Rn :
‖x‖ ≤ 1}. Hence the cardinality of the grid G(θ) satisfies

|G(θ)| =
n∏
i=1

(2b1/θic+ 1).
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For each x̂ ∈ G(θ), denote by R(x̂) the open hyperrectangle
in K with center x̂ and sides 2θ1, . . . , 2θn, that is,

R(x̂) := {x ∈ K : |xi − x̂i| < θi for i = 1, . . . , n}. (21)

Then the union of all R(x̂) covers the initial set K, that is,

K =
⋃

x̂∈G(θ)

R(x̂).

By comparing (20), (21), and the upper bound in (18) to
(3), we see that R(x̂) ⊂ BDσ+Nσ (x̂, ε, T ) for all x̂ ∈ G(θ).
Hence the grid G(θ) is (T, ε)-spanning, and thus the minimal
cardinality of a (T, ε)-spanning set satisfies

S(Aσ, ε, T,K) ≤ |G(θ)| ≤
n∏
i=1

(2/θi + 1).

Then the definition (4) of the topological entropy implies

h(Dσ +Nσ)

≤ lim
ε↘0

lim sup
T→∞

n∑
i=1

log(2/θi + 1)

T

= lim
ε↘0

lim sup
T→∞

n∑
i=1

log(1/θi)

T
+ lim sup

T→∞

n∑
i=1

log(2 + θi)

T

= lim sup
T→∞

n∑
i=1

η̄i(T )

T
+ lim
ε↘0

nε+ lim sup
T→∞

n log(cε/ε)

T

= lim sup
T→∞

n∑
i=1

1

T
max
t∈[0,T ]

∑
p∈P

Re(aip)τp(t).

Second, consider the grid G(θ) defined by (19) with the
vector θ = (θ1, . . . , θn) defined by

θi := eεT e−η̄i(T )εcε, i = 1, . . . , n, (22)

and the hyperrectangles R(x̂) with center x̂ ∈ G(θ) and
sides 2θ1, . . . , 2θn defined by (21). By comparing (21),
(22), and the lower bound in (18) to (3), we see that
BDσ+Nσ (x̂, ε, T ) ⊂ R(x̂) for all x̂ ∈ G(θ). As the points
in G(θ) adjacent to x̂ are on the boundary of the closure of
R(x̂), the grid G(θ) is (T, ε)-separated, and thus the maximal
cardinality of a (T, ε)-separated set satisfies

N(Aσ, ε, T,K) ≥ |G(θ)| ≥
n∏
i=1

(2/θi − 1).

Then the property (5) of the topological entropy implies

h(Dσ +Nσ)

≥ lim
ε↘0

lim sup
T→∞

n∑
i=1

log(2/θi − 1)

T

= lim
ε↘0

lim sup
T→∞

n∑
i=1

log(1/θi)

T
+ lim sup

T→∞

n∑
i=1

log(2− θi)
T

= lim sup
T→∞

n∑
i=1

η̄i(T )

T
− lim
ε↘0

nε− lim sup
T→∞

n log(cεε)

T

= lim sup
T→∞

n∑
i=1

1

T
max
t∈[0,T ]

∑
p∈P

Re(aip)τp(t).

In the following subsections, we discuss the implications
of Theorem 6 in certain special scenarios, and also use (16)
to derive more general but more conservative upper bounds
for the entropy of the switched linear system with pairwise
commuting matrices (15).

A. Formulae for entropy in special scenarios

First, for the non-switched case, Theorem 6 becomes the
following well-known result (see, e.g., [4, Th. 15] and [27,
Th. 4.1]).

Corollary 7. The topological entropy of the linear time-
invariant (LTI) system

ẋ = Ax, x(0) ∈ K

equals the sum of the positive real parts of the eigenvalues
of A, that is,

h(A) =
∑

λ∈spec(A)

max{Re(λ), 0}. (23)

Proof. For the non-switched case, the matrix D+N in (15)
can be simply taken to be a Jordan canonical form of A,
with ai being the i-th diagonal entry, and thus spec(A) =
{a1, . . . , an}.3 For each i, the component-wise maximal
weighted averages over [0, T ] in (16) become āi(T ) =
max{Re(ai), 0} for all T ≥ 0, and thus (16) becomes
(23).

Second, for the case where {Ap : p ∈ P} in (12) is a
commuting family of diagonalizable matrices, Proposition 5
holds with just the diagonal matrices Dp. Then (15) becomes
the switched diagonal system

ẋ = Dσx, x(0) ∈ K,

and Theorem 6 becomes [22, Th. 7]. As a direct consequence,
the results in [22, Prop. 8, 9 and Cor. 10] can be generalized
to obtain more general but more conservative upper bounds
for h(Dσ +Nσ), as demonstrated in the next subsection.

B. More general upper bounds for entropy

First, we estimate h(Dσ +Nσ) in terms of the entropy in
each individual scalar component.

Proposition 8. The topological entropy of the switched
linear system with pairwise commuting matrices (15) is
upper bounded by

h(Dσ +Nσ) ≤
n∑
i=1

max{âi, 0} (24)

with the component-wise asymptotic weighted averages de-
fined by

âi := lim sup
t→∞

∑
p∈P

Re(aip)ρp(t), i = 1, . . . , n, (25)

where the active rates ρp are defined by (7).

3The property spec(A) = {a1, . . . , an} holds even if D +N is not a
Jordan canonical form, as D and N commute and are thus simultaneously
triangularizable.
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Proof. From (16) and the subadditivity of limit supremum,
it follows that

h(Dσ +Nσ) = lim sup
T→∞

n∑
i=1

āi(T )

≤
n∑
i=1

lim sup
T→∞

āi(T ) =

n∑
i=1

max{âi, 0},

where the last equality follows from Lemma 1.

If the limits limt→∞ ρp(t) exist for all p ∈ P (e.g., when
the switching signal σ is periodic; see [28, Sec. 3.2.1] for
more conditions), then (24) holds with equality.

Corollary 9. Consider the switched linear system with
pariwise-commuting matrices (15). For a switching signal
σ such that the active rates ρp(t) converge as t → ∞ for
all p ∈ P , the topological entropy of (15) satisfies

h(Dσ +Nσ) =

n∑
i=1

max{âi, 0},

with the component-wise asymptotic weighted averages âi
defined by (25). Equivalently, h(Dσ + Nσ) equals the
topological entropy (23) of the LTI system defined by the
asymptotic weighted average matrix A :=

∑
p∈P Dpρ̂p with

ρ̂p = limt→∞ ρp(t).

Second, we estimate h(Dσ +Nσ) in terms of the entropy
of each individual mode.

Proposition 10. The topological entropy of the switched
linear system with pairwise commuting matrices (15) is
upper bounded by

h(Dσ +Nσ) ≤ lim sup
t→∞

∑
p∈P

h(Dp)ρp(t) (26)

with the active rates ρp defined by (7), where h(Dp) denotes
the topological entropy of the p-th mode, and satisfies (23)
with A = Dp and thus h(Dp) = h(Dp +Np).

Proof. Consider the auxiliary switched diagonal system

ẋ = D̄σx, x(0) ∈ K (27)

with the family of positive-semidefinite diagonal matrices
{D̄p := diag(ā1

p, . . . , ā
n
p ) : p ∈ P} defined by

āip := max{Re(aip), 0} ≥ 0, i = 1, . . . , n.

Based on (23), the corresponding individual modes of (15)
and (27) have the same entropy, that is, for each p ∈ P ,

h(D̄p) =

n∑
i=1

āip =

n∑
i=1

max{Re(aip), 0} = h(Dp)

Meanwhile, the formula (16) implies

h(D̄σ) = lim sup
T→∞

n∑
i=1

1

T
max
t∈[0,T ]

∑
p∈P

āipτp(t)

≥ lim sup
T→∞

n∑
i=1

1

T
max
t∈[0,T ]

∑
p∈P

Re(aip)τp(t) = h(Dσ +Nσ).

Moreover, for each i ∈ {1, . . . , n}, the sum
∑
p∈P ā

i
pτp(t)

is nondecreasing in t; thus

1

T
max
t∈[0,T ]

∑
p∈P

āipτp(t) =
1

T

∑
p∈P

āipτp(T ) =
∑
p∈P

āipρp(T ).

Combining the results above, we obtain

h(Dσ +Nσ) ≤ h(D̄σ) = lim sup
T→∞

n∑
i=1

∑
p∈P

āipρp(T )

= lim sup
T→∞

∑
p∈P

h(Dp)ρp(T ).

The formula (23) for the entropy of LTI systems implies
that, if all entries of all Dp in (15) have nonnegative real
parts, that is, Re(aip) ≥ 0 for all i ∈ {1, . . . , n} and p ∈ P ,
then h(Dp) = tr(Dp) for all p ∈ P , and thus the upper
bound (26) and the general lower bound (14) coincide.

Corollary 11. Consider the switched linear system with
pariwise-commuting matrices (15). If Re(aip) ≥ 0 for all
i ∈ {1, . . . , n} and p ∈ P , then the topological entropy of
(15) satisfy

h(Dσ +Nσ) = lim sup
t→∞

∑
p∈P

tr(Dp)ρp(t).

Based on (26), we derive the following upper bounds for
the entropy h(Dσ +Nσ).

Corollary 12. The topological entropy of the switched linear
system with pairwise commuting matrices (15) is upper
bounded by

h(Dσ +Nσ) ≤
∑
p∈P

h(Dp)ρ̂p (28)

with the asymptotic active rates ρ̂p defined by (8), and also
by

h(Dσ +Nσ) ≤ max
p∈P

h(Dp), (29)

where h(Dp) denotes the topological entropy of the p-th
mode, and satisfies (23) with A = Dp and thus h(Dp) =
h(Dp +Np).

Properties of the formula (16) and the upper bounds (24),
(26), (28) and (29) are summarized in the following remark:

Remark 3. 1) Unlike the formula (16) and upper bound
(24), the upper bounds (26), (28) and (29) are independent
of the relative order of the scalar components between the
matrices Dp + Np in (15), and can thus be calculated
directly from the commuting family {Ap : p ∈ P},
without the simultaneous change of basis in Proposition 5.

2) For a fixed family of matrices {Dp : p ∈ P}, compared
with the formula (16), the upper bounds (24) and (26)
depend only on the active rates ρp, the upper bound (28)
only on the asymptotic active rates ρ̂p; the upper bound
(29) is independent of switching.

3) In general, the relation between the upper bounds (24) and
(26), and that between the upper bounds (28) and (29),
are both unknown. Meanwhile, both (24) and (26) imply
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(28), whereas only (26) implies (29). These properties are
demonstrated in the following example.

Example 2. Consider the index set P = {1, 2} and the
switching signals σ0, σ1 and σ2 defined as follows (see also
footnote 1):
• SWITCHING SIGNAL σ0 WITH NO SWITCH: Set σ0 ≡ 1.

Then the asymptotic active rates satisfy ρ̂1 = 1 and ρ̂2 = 0.
• SWITCHING SIGNAL σ1 WITH PERIODIC SWITCHES: For
k ∈ N , set tk = 2k. Then ρ̂1 = ρ̂2 = 0.5.

• SWITCHING SIGNAL σ2 WITH CONSTANT SET-POINTS:
Set t1 := 1. For k ≥ 1, set t2k := min{t > t2k−1 :
ρ2(t) ≥ 0.9} and t2k+1 := min{t > t2k : ρ1(t) ≥ 0.9}.
Then tk = 9k−1 + 9k−2 for k ≥ 2, and ρ̂1 = ρ̂2 = 0.9.

As the entropy of the switched linear system with pairwise
commuting matrices (15) is independent of the nilpotent part,
consider the diagonal matrices

D1 =

[
−1 0
0 2

]
, D2 =

[
3 0
0 −1

]
.

The values of h(Dσ0
), h(Dσ1

) and h(Dσ2
) calculated using

the formula (16), and their estimates using the upper bounds
(24), (26), (28) and (29), as well as the general upper and
lower bounds (13) and (14), are listed in Table I below.
In particular, the calculation for the value and estimates of
h(Dσ2

) can be found in Appendix C.

TABLE I
ENTROPY VALUES AND ESTIMATES IN EXAMPLE 2

(ρ̂1, ρ̂2) (16) (24) (26) (28) (29) (13) (14)
σ0 (1, 0) 2 2 2 2 3 4 1

σ1 (0.5, 0.5) 1.5 1.5 2.5 2.5 3 5 1.5

σ2 (0.9, 0.9) 2.79 4.3 2.9 4.5 3 5.8 1.9

IV. CONCLUSION

In this paper, we studied the topological entropy of
switched linear systems with pairwise commuting matrices.
We devised a simultaneous change of basis under which each
of the matrices can be decomposed into a diagonal part and
a nilpotent part, and all the diagonal and nilpotent parts are
pairwise commuting. A formula for the topological entropy
is established in terms of the eigenvalues in each scalar
component and the active time of each mode, and is thus
independent of the nilpotent parts. We also demonstrated how
the formula generalizes known results for the non-switched
case and the case with simultaneously diagonalizable ma-
trices, and constructed more general but more conservative
upper bounds for the entropy.

An intriguing topic for future research is to reconcile the
switching characterizations for entropy computation and for
stability analysis and control design. For example, in stability
and stabilization of switched systems, it is standard to impose
slow-switching conditions such as the average dwell-time
[29], which could also potentially be used in analyzing the
entropy. Meanwhile, the entropy computation in this paper is
based on the notion of active time (i.e., the accumulated time
in which a mode is active). Such a quantity is rarely seen in

the literature of switched control systems, and incorporating
it into the control design procedure may lead to more precise
data-rate bounds.

APPENDIX

A. Proof of Lemma 1
As a direct consequence of the definition (10), it holds that

ā(T ) ≥ max{
∑
p∈P apτp(T )/T, 0} for all T ≥ 0, and thus

lim supT→∞ ā(T ) ≥ max{â, 0}. Then it remains to prove
that the reverse holds as well. The definition (9) of â implies
that for each δ > 0, there is a large enough T ′δ ≥ 0 such that∑

p∈P
apρp(t) < â+ δ ∀ t > T ′δ.

Consider an arbitrary T > T ′δ , and let

t∗(T ) := arg max
t∈[0,T ]

∑
p∈P

apτp(t).

If t∗(T ) ∈ (T ′δ, T ], then

ā(T ) =
1

T

∑
p∈P

apτp(t
∗(T )) ≤

∑
p∈P

apρp(t
∗(T )) < â+ δ.

Otherwise t∗(T ) ∈ [0, T ′δ], and thus

ā(T ) =
1

T

∑
p∈P

apτp(t
∗(T )) ≤ amt

∗(T )

T
≤ |am|T

′
δ

T

with am := maxp∈P ap. Combining the cases above yields
ā(T ) ≤ max{â+ δ, |am|T ′δ/T} for all T > T ′δ . Hence there
is a large enough Tδ ≥ 0 (e.g., Tδ = max{T ′δ, |am|T ′δ/δ})
such that ā(T ) ≤ max{â, 0} + δ for all T > Tδ . As δ > 0
is arbitrary, it holds that lim supT→∞ ā(T ) ≤ max{â, 0}.
B. Proof of Lemma 2

First, we derive the upper bound in (17). For each p ∈ P ,
as Np is nilpotent, there is a positive integer kp such that
N
kp
p = 0. Let ks :=

∑
p∈P kp. For an arbitrary t ≥ 0, let

N(t) :=
∑
p∈P

Npρp(t) ∈ Cn×n.

As {Np : p ∈ P} is a commuting family and P is a finite set,
it follows that ks is a finite integer and N(t)ks = 0. Also,
‖N(t)‖ ≤ maxp∈P ‖Np‖ =: ηm. Hence for all v ∈ Cn,∥∥eN(t)tv

∥∥ =

∥∥∥∥∥
(
ks−1∑
k=0

N(t)ktk

k!

)
v

∥∥∥∥∥
≤

(
ks−1∑
k=0

ηkmt
k

k!

)
‖v‖ =

(
ks−1∑
k=0

ηkm
δk
· δ

ktk

k!

)
‖v‖

≤ cδ

(
ks−1∑
k=0

δktk

k!

)
‖v‖ ≤ cδeδt‖v‖

with cδ := max{(ηm/δ)ks−1, 1} > 0.
Second, we derive the lower bound in (17). For all t ≥ 0, it

holds that ‖−N(t)‖ = ‖N(t)‖ ≤ ηm. Hence for all v ∈ Cn,
the proof above also implies

‖v‖ =
∥∥e−N(t)teN(t)tv

∥∥ ≤ cδeδt∥∥eN(t)tv
∥∥,

that is, ‖eN(t)tv‖ ≥ c−1
δ e−δt‖v‖.
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C. Calculations of the value and estimates of h(Dσ2
) in

Example 2

Recall from footnote 1 that σ = 1 on [t2k, t2k+1) and
σ = 2 on [t2k+1, t2k+2), where t0 = 0, t1 = 1, and tk =
9k−1 + 9k−2 for all k ≥ 2. Hence τ1(t) = t − 0.9t2k and
τ2(t) = 0.9t2k for t ∈ [t2k, t2k+1), and τ1(t) = 0.9t2k+1

and τ2(t) = t− 0.9t2k+1 for t ∈ [t2k+1, t2k+2), and thus

a1
1τ1(t) + a1

2τ2(t) = 3τ2(t)− τ1(t)

=

{
3.6t2k − t, t ∈ [t2k, t2k+1),

3t− 3.6t2k+1, t ∈ [t2k+1, t2k+2)

a2
1τ1(t) + a2

2τ2(t) = 2τ1(t)

=

{
2t− 2.7t2k, t ∈ [t2k, t2k+1),

2.7t2k+1 − t, t ∈ [t2k+1, t2k+2).

Then ā1 and ā2 in (16) satisfy

ā1(T ) =
1

T
max
t∈[0,T ]

a1
1τ1(t) + a1

2τ2(t)

=

{
2.6t2k/T, T ∈ [t2k, t2k+1 + 8t2k/3),

3− 3.6t2k+1/T, T ∈ [t2k+1 + 8t2k/3, t2k+2)

ā2(T ) =
1

T
max
t∈[0,T ]

a2
1τ1(t) + a2

2τ2(t)

=

{
1.7t2k+1/T, T ∈ [t2k+1, t2k+2 + 4t2k+1),

2− 2.7t2k+2/T, T ∈ [t2k+2 + 4t2k+1, t2k+3).

Hence

ā1(T ) + ā2(T )

=


17.9t2k/T, T ∈ [t2k+1, t2k+1 + 8t2k/3),

3− 1.9t2k+1/T, T ∈ [t2k+1 + 8t2k/3, t2k+2),

25.1t2k+1/T, T ∈ [t2k+2, t2k+2 + 4t2k+1),

2− 0.1t2k+2/T, T ∈ [t2k+2 + 4t2k+1, t2k+3).

Therefore, h(Dσ2
) = lim supT→∞ ā1(T ) + ā2(T ) =

max{1.99, 2.79} = 2.79.
For the upper bound (24),

h(Dσ2
) = max{â1, 0}+ max{â2, 0}

= −1 + (3− (−1))ρ̂2 + (2− (−1))ρ̂1 − 1 = 4.3.

The bounds (26), (13) and (14) are calculated similarly.
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