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Motivation
Topological entropy in systems theory

Originated from [Kolmogorov, 1958], defined by [Adler, Konheim, and
McAndrew, 1965], [Bowen, 1971], and [Dinaburg, 1970].
Essential idea:
• The complexity growth of a system.
• The information accumulation needed to approximate a trajectory.

In control theory:
• Topological feedback entropy [Nair, Evans, Mareels, and Moran, 2004]
• Invariance entropy [Colonius and Kawan, 2009], exponential stabilization

entropy [Colonius, 2012]
• Estimation entropy [Savkin, 2006] and [Liberzon and Mitra, 2018]

Minimal data rate for stabilizing linear time-invariant (LTI) system
[Hespanha, Ortega, and Vasudevan, 2002], [Nair and Evans, 2003], and
[Tatikonda and Mitter, 2004]
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Motivation
Switched linear system with pairwise commuting matrices

Switching is ubiquitous in realistic system models.
Stability under arbitrary switching: pairwise commuting matrices
[Narendra and Balakrishnan, 1994]
Neither minimal data rate for stabilization nor topological entropy is
well-understood:
• Sufficient data rate [Liberzon, 2014], [Yang and Liberzon, 2018], and

[Sibai and Mitra, 2017]
• Topological entropy [Yang, Schmidt, and Liberzon, 2018]
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Switched System
A finite family of continuous-time dynamical systems

ẋ = fp(x), p ∈ P

with the state x ∈ Rn and an index set P.

A switched system
ẋ = fσ(x), x(0) ∈ K.

Switching signal σ : R+ → P is right-continuous and piecewise constant
Initial set K is compact with a nonempty interior
Modes {fp : p ∈ P}
Denote by ξσ(x, t) the solution at t with switching signal σ and initial
state x
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Entropy Definition
A switched system

ẋ = fσ(x), x(0) ∈ K.

Given a time horizon T ≥ 0 and a radius ε > 0, define the open ball:

Bfσ (x, ε, T ) :=
{
x′ ∈ K : max

t∈[0,T ]
‖ξσ(x′, t)− ξσ(x, t)‖ < ε

}
.

A finite set E ⊂ K is (T, ε)-spanning if K =
⋃
x̂∈E Bfσ (x̂, ε, T ).

Let S(fσ, ε, T,K) be the minimal cardinality of a (T, ε)-spanning set.
The topological entropy with initial set K and switching signal σ is
defined in terms of the exponential growth rate of S(fσ, ε, T,K) by

h(fσ,K) := lim
ε↘0

lim sup
T→∞

1
T

logS(fσ, ε, T,K).
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Alternative Entropy Definition
A switched system

ẋ = fσ(x), x(0) ∈ K.

The topological entropy is defined by

h(fσ,K) := lim
ε↘0

lim sup
T→∞

1
T

logS(fσ, ε, T,K).

A finite set of points E ⊂ K is (T, ε)-separated if for all x̂, x̂′ ∈ E,

x̂′ /∈ Bfσ (x̂, ε, T ) =
{
x ∈ K : max

t∈[0,T ]
‖ξσ(x, t)− ξσ(x̂, t)‖ < ε

}
.

Let N(fσ, ε, T,K) be the maximal cardinality of a (T, ε)-separated set.
Proposition 1. The topological entropy satisfies

h(fσ,K) = lim
ε↘0

lim sup
T→∞

1
T

logN(fσ, ε, T,K).

Proof. N(fσ, 2ε, T,K) ≤ S(fσ, ε, T,K) ≤ N(fσ, ε, T,K).
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Active Time and Active Rates
For a switching signal σ, define the following quantities.

The active time of each mode over an interval [0, t] is

τp(t) :=
∫ t

0
1p(σ(s)) ds, p ∈ P

with the indicator function 1. Then
∑
p∈P τp(t) = t.

The active rate of each mode over [0, t] is

ρp(t) := τp(t)/t, p ∈ P

with ρp(0) := 1p(σ(0)). Then
∑
p∈P ρp(t) = 1.

The asymptotic active rate of each mode is

ρ̂p := lim sup
t→∞

ρp(t), p ∈ P.

It is possible that
∑
p∈P ρ̂p > 1.
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Entropy of Switched Linear Systems
A switched linear system

ẋ = Aσx, x(0) ∈ K.

Results from [Yang, Schmidt, and Liberzon, 2018]:
Proposition 2. The topological entropy of the switched linear system is
independent of the choice of the initial set K.
Proposition 3. The topological entropy of the switched linear system
satisfies

lim sup
t→∞

∑
p∈P

tr(Ap)ρp(t) ≤ h(Aσ) ≤ lim sup
t→∞

∑
p∈P

n‖Ap‖ρp(t)

with the active rates ρp.
Proof for the upper bound.

1. The solutions satisfy ‖ξσ(x′, t)− ξσ(x, t)‖ ≤ e
∑

p
‖Ap‖τp(t)‖x′ − x‖.

2. Construct a (T, ε)-spanning set using a grid.
Lack of “independence” between eigenspaces of different modes!
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Switched Commuting Linear Systems
A switched linear system

ẋ = Aσx, x(0) ∈ K

with a commuting family {Ap : p ∈ P}.

If all Ap are diagonalizable, then there is a change of basis under which
all Ap are diagonal.
Every scalar component evolves independently (under the same
switching signal).
A formula for the entropy was established in [Yang, Schmidt, and
Liberzon, 2018].
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Switched Commuting Linear Systems
A switched linear system

ẋ = Aσx, x(0) ∈ K

with a commuting family {Ap : p ∈ P}.

A well-known result: in general, there is a change of basis under which
all Ap are upper triangular.
Each scalar component evolves in a “strict-feedback” fashion.
An upper bound for the entropy was established in [Yang, Schmidt, and
Liberzon, 2018].
Being simultaneously triangularizable is weaker than being pairwise
commuting!
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Switched Commuting Linear Systems
A switched linear system

ẋ = Aσx, x(0) ∈ K

with a commuting family {Ap : p ∈ P}.

First goal: a suitable change of basis for pairwise commuting matrices.
Jordan–Chevalley Decomposition [Humphreys, 1972]. For each matrix
A, there exist polynomials f and g, without constant term, such that
f(A) is a diagonalizable matrix, g(A) is a nilpotent matrix, and

A = f(A) + g(A).

A polynomial of a matrix A commutes with all matrices that commute
with A.
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A Change of Basis

Proposition 5
For the commuting family {Ap : p ∈ P}, there exists an invertible matrix
Γ ∈ Cn×n such that

ΓApΓ−1 = Dp +Np ∀ p ∈ P,

where all Dp ∈ Cn×n are diagonal matrices, all Np ∈ Cn×n are nilpotent
matrices, and {Dp, Np : p ∈ P} is a commuting family.

Proof.
1. For each p, there are polynomials fp and gp such that fp(Ap) is

diagonalizable, gp(Ap) is nilpotent, and Ap = fp(Ap) + gp(Ap).
2. The set {fp(Ap), gp(Ap) : p ∈ P} is a commuting family.
3. There is an invertible Γ ∈ Cn×n such that all Dp := Γfp(Ap)Γ−1 are

invertible.
4. All Np := Γgp(Ap)Γ−1 are nilpotent, and {Dp, Np : p ∈ P} is a commuting

family.
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A Formula for Entropy
The switched commuting linear system becomes

ẋ = (Dσ +Nσ)x, x(0) ∈ K,

where Dp = diag(a1
p, . . . , a

n
p ) are diagonal, Np are nilpotent, and

{Dp, Np : p ∈ P} is a commuting family.

Theorem 6
The topological entropy of the switched commuting system satisfies

h(Dσ +Nσ) = lim sup
T→∞

n∑
i=1

1
T

max
t∈[0,T ]

∑
p∈P

Re(aip)τp(t)

with the active times τp.

The entropy only depends on the diagonal part, i.e.,
h(Dσ +Nσ) = h(Dσ).
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A Formula for Entropy
Proof.
1. The solutions satisfy

‖ξσ(x′, t)− ξσ(x, t)‖ =
∥∥∥e∑p∈P

Npτp(t)
e

∑
p∈P

Dpτp(t)(x′ − x)
∥∥∥.

2. Lemma 2. Consider the commuting family of nilpotent matrices {Np : p ∈ P}.
For each δ > 0, there is a constant cδ > 0 such that for all v ∈ Cn,

c−1
δ e−δt‖v‖ ≤

∥∥∥e∑p∈P
Npτp(t)

v

∥∥∥ ≤ cδeδt‖v‖
for all t ≥ 0 with the active times τp.

3. Given a radius ε > 0, there is a constant cε > 0 such that

· · · ≤ ‖ξσ(x′, t)− ξσ(x, t)‖ ≤ cεeεt max
i=1,...,n

e

∑
p∈P

Re(aip)τp(t)|x′i − xi|.

4. For the upper/lower bound, construct a (T, ε)-spanning/separated set using a
grid.
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The Non-Switched Case
The formula for entropy yields the following well-known result [Bowen, 1971]:

Corollary 7
The topological entropy of the linear time-invariant (LTI) system

ẋ = Ax, x(0) ∈ K

equals the sum of the positive real parts of the eigenvalues of A, that is,

h(A) =
∑

λ∈spec(A)

max{Re(λ), 0}.

Proof.
1. The spectrum spec(A) = {a1, . . . , an}.
2. The entropy

h(A) = lim sup
T→∞

n∑
i=1

1
T

max
t∈[0,T ]

Re(ai)t =
n∑
i=1

max{Re(ai), 0}.
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More General Upper and Lower Bounds for Entropy

# Formula/upper bounds Sw CoB

(1) = lim sup
T→∞

n∑
i=1

1
T

max
t∈[0,T ]

∑
p∈P

Re(aip)τp(t) τp Yes

(2) ≤
n∑
i=1

max
{

lim sup
t→∞

∑
p∈P

Re(aip)ρp(t), 0
}

ρp Yes

(3) ≤ lim sup
t→∞

∑
p∈P

h(Dp)ρp(t) ρp No

(4) ≤
∑
p∈P

h(Dp)ρ̂p ρ̂p No

(5) ≤ max
p∈P

h(Dp) N/A No

(6) ≤ lim sup
t→∞

∑
p∈P

n‖Ap‖ρp(t) ρp No

(7) ≥ lim sup
t→∞

∑
p∈P

tr(Ap)ρp(t) ρp No
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Numerical Example
Let P = {1, 2} and

D1 =
[
−1 0
0 2

]
, D2 =

[
3 0
0 0

]
.

(ρ̂1, ρ̂2) (1) (2) (3) (4) (5) (6) (7)

No switch (1, 0) 2 2 2 2 3 4 1

Periodic switches (0.5, 0.5) 2 2 2.5 2.5 3 5 2

Switches w/ set-points (0.9, 0.9) 2.8 4.4 2.9 4.5 3 5.8 2.8
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Conclusion
Contributions:

Switched linear systems with pairwise commuting matrices.
A change of basis under which each of the matrices can be decomposed
into a diagonal part and a nilpotent part, and all the diagonal and
nilpotent parts are pairwise commuting.
A formula for the topological entropy, which only depends on the
diagonal part.
More general upper bounds for the entropy.

Future research:
Reconcile the switching characterizations for entropy computation and
for stability analysis and control design
• Stability and stabilization: slow-switching conditions such as the average

dwell-time
• Entropy: the active time (rarely seen in the literature)
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