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Abstract— Asynchronously switched sampled-data systems
can help model power systems and vehicles that evolve in
continuous-time with switching behavior and discrete time
measurements. We address the problem of jointly estimating
a switching signal, with uncertainty in the exact switching
times, as well as the continuous states of the system. We prove
stability of the standard Kalman Filter under uncertainty in the
switching times, with statistical bounds relating to the sampling
period. We then propose a method for estimation of switching
times as well as a method for efficient joint estimation of the
state and switching signal inspired by the interacting multiple-
model extended-Viterbi algorithm. We validate our algorithms
in simulation for a power converter and a maneuvering vehicle.

I. INTRODUCTION

Real-world systems are often best modeled in continuous
time, for example using equations of motion, but with
measurements taken at discrete instants [1]. Many systems
also vary their behavior between discrete modes either by
their construction or to simplify control [2]; for example,
geared robot motion, power systems using switched circuits
or sources, or an aircraft with several trim conditions includ-
ing cruising and banked turning. In real-world systems we
must also consider noise in our process and measurements,
usually represented by random additive noise. A practical
formulation for such systems is a stochastic sampled-data
switched system [3], given by

9xptq “ fpσptq, xptq, uptqq ` wptq

yptkq “ hpσptkq, xptkqq ` vptkq,

where xptq is the state, uptq is an input, wptq is a process
noise, yptkq, usually denoted yk, is a measured output subject
to random measurement noise vptkq, usually denoted vk, σptq
is a “switching signal” taking values in a finite set that tells
us the active mode at time t, and tk are discrete times of
measurements indexed by k. The control of such systems is
addressed in [4].

State estimation of discrete-time switched systems has at-
tracted considerable attention, including work by Alessandri
et al [5]. In these papers, the unknown switching signal is
estimated using a Maximum-Likelihood method combined
with either Kalman Filtering or Moving Horizon Estimation
of the continuous states. In contrast, Interacting Multiple-
Model (IMM) approaches to hybrid system state estimation
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have been suggested in [6] and [7]. Ho [8] augmented these
methods using Viterbi algorithm concepts to obtain pseudo
Maximum-A-Posteriori (MAP) solutions to the windowed
estimation problem. In [9], a review of estimation methods
for switched systems is provided.

In these prior works, it is always assumed that switches
occur only at times that measurements are obtained, in other
words the sampling times. There are papers that consider es-
timation of continuous-time switched systems like [10], [11],
and [12]. In [13], the authors consider switches that occur at
a constant offset from the measurement times. However we
could not find prior works that consider the problem of fully
asynchronous switches with sampled measurements.

In this paper we address state estimation when switches
can occur at any time between measurement samples. In
Section III we provide results on the convergence of Kalman
Filter error in the setting where the switching signal is known
at sampling times, but exact switching times are unknown.
We build upon analysis first done by Anderson and Moore
[14], and more recently extended by Zhang [15]. We provide
bounds on the mean error and mean-squared error (MSE) of
the estimates that can be useful in the context of control [16].

In Section IV we provide a method for simultaneously
estimating the state xptq and switching signal σptq. This
method is inspired by the IMM Extended Viterbi (IMM-
EV) Approach [8]. In Section V, we show simulations
that demonstrate our theoretical results and validate the
performance of our algorithms.

II. PRELIMINARIES

We consider a linear sampled-data output-error switched
system with continuous-time dynamics,

9xptq “ Apσptqqxptq ` Bpσptqquptq (1)
yk “ Hxptkq ` vk, (2)

for xptq P Rn, uptq P Rℓ, vk, yk P Rm, and
Apσptqq P tAp1q, . . . , ApLqu a n ˆ n matrix, Bpσptqq P

tBp1q, . . . , BpLqu a n ˆ ℓ matrix, with switching signal
σptq P t1, . . . , Lu. Our goal is to jointly estimate the switch-
ing signal and state at discrete periodically sampled timesteps
tk “ kT , where T is the sampling period. We denote the
state, input, and active mode at the discrete timesteps as
xk “ xptkq, uk “ uptkq and σk “ σptkq respectively,
as well as the active system matrices Ak “ Apσptkqq and
Bk “ Bpσptkqq. We impose a dwell time τd ą T so that
switches occur at least τd apart from each other and at most
once per sample. We can then parametrize the signal σptq
by the sequences tσku and tt̄ku, for each tk P r0, tk`1 ´ tkq
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specifying the exact time at which a switch occurs within the
interval rtk, tk`1q, or an arbitrary value if no switch occurs.

III. KALMAN FILTER CONVERGENCE

We assume a zero order hold (ZOH) for the input, so that
we have an exact discrete time update equation

xk`1 “ Fkxk ` Gkuk, (3)

where

Fk “ eAk`1pT´t̄kqeAk t̄k. (4)

and

Gk “ Fk

ż t̄k

0

e´AkτBkdτ `

ż T

t̄k

eAk`1pT´τqBk`1dτ.

(5)

A. Conditions for Observability

We consider the following definition of observability for
a discrete-time linear time-varying system [15].

Definition 1 (Uniform Observability): The sequence
pFk, Hq is uniformly observable i.e. there exist constants
h P Zą0 and ρ1 P Rą0 such that for all x P Rn

ρ1∥x∥2 ď x1

˜

k`h
ÿ

i“k

Φ1
k`h,iH

1R´1HΦk`h,i

¸

x

where Φi,k – Fi´1 ¨ ¨ ¨Fk`1Fk.
In many cases, uniform observability of time-varying systems
like switched systems is difficult to verify for all possible
switching signals [17]. By imposing a dwell time τd, uniform
observability of each mode can generate uniform observabil-
ity of the switched system.

Assumption 1 (Each mode observable): Suppose that
each unswitched pair tpeAp1qT , Hq, . . . , peApLqT , Hqu

represents a uniformly observable system with constants
h1, . . . , hL, ρ11, . . . , ρ

L
1 .

Lemma 1: Suppose that we have Assumption 1 and τd ą

hT , where h – maxth1, . . . , hLu, then the switched system
in (3), (2) is uniformly observable for every admissible
switching sequence with constants h “ 2h ´ 1 and ρ1 ě

mintρ11, . . . , ρ
L
1 u, that do not depend on the sequence.

Proof. Given that τd ą hT , the system must spend greater
than hj timesteps in any mode j. In order to guarantee
that the time window rtk, tk`hq contains at least hj samples
uninterrupted in a single mode j, then our window must be
at least h “ 2h ´ 1 samples long. In any window of this
length we must have,

ρ∥x∥2 ď x1

˜

k`2h̄´1
ÿ

i“k

Φ1
i,kH

1R´1HΦi,k

¸

x

where ρ “ mintρ11, . . . , ρ
L
1 u. l

B. Errors in System Matrices

A Kalman Filter is the MAP state estimator of a discrete-
time system. Kalman Filters compute state estimates x̂k

and their associated covariance matrices Pk at sample k.
We assume that our initial condition is a random variable
x0 „ N px̂0, P0q and that vk „ iid N p0, Rq for R an
m ˆ m symmetric positive-definite matrix. We compute
the estimate at sample k ` 1 by combining yk`1 with a
prediction x̂k`1|k based on the previous estimate x̂k. These
sources of information are combined through the Kalman
gain matrix Kk which depends on the system matrices as
well as the measurement noise variance R. When we do not
know system matrices Fk and Gk exactly, due to uncertainty
in switching times, but have estimates F̂k and Ĝk, then our
output-error Kalman Filter update equations are of the form,

x̂k`1|k “ F̂kx̂k ` Ĝku (6)

Pk`1|k “ F̂kPkF̂
1
k (7)

Kk “ pF̂kPkF̂
1
kqH 1pHpF̂kPkF̂

1
kqH 1 ` Rq´1 (8)

x̂k`1 “ pI ´ KkHqx̂k`1|k ` Kkyk`1 (9)
Pk`1 “ pI ´ KkHqPk`1|k. (10)

First we provide error bounds for our estimated system ma-
trices assuming that we know the correct sequence tσku but
not the exact switching times tt̄ku, instead using estimates
tt̂ku plugged into (4) and (5). In this situation we will bound
the error of our state estimates using bounds on the error of
the estimated state transition matrices due to switching time
uncertainty.

Lemma 2 (Error in Estimation of System Matrices): For
a transition between modes i and j, let the error in switching
time estimation be denoted rt – t̂ ´ t̄, then the estimation
error, rF – F̂ ´ F is bounded in norm as

∥ rF∥ ď |rt|∥Apjq ´ Apiq∥ep∥Apjq´Apiq∥`3∥Apiq∥`∥Apjq∥qT

ď T∥Apjq ´ Apiq∥ep∥Apjq´Apiq∥`3∥Apiq∥`∥Apjq∥qT .
(11)

and the estimation error, rG – Ĝ´G is bounded in norm as

∥ rG∥ ď ∥ rF∥e∥Apiq∥T ∥Bpiq∥ ` |rt|e∥Apjq∥T

¨
`

e∥Apiq∥T ∥Bpiq∥ ` e∥Apjq∥T ∥Bpjq∥
˘

.
(12)

Proof. Call Fj “ eApjqpT´t̄q, Fi “ eApiqt̄, Ej – e´Apjqrt and
Ei – eApiqrt. We then have that F̂ “ F̂jF̂i “ FjEjEiFi, so
rF “ FjpEjEi ´ IqFi, then

∥ rF∥ ď ∥EjEi ´ I∥∥Fj∥∥Fi∥
ď ∥pEj ´ E´1

i qEi∥ep∥Apjq∥`∥Apiq∥qT

ď ∥pe´Apjqrt ´ e´ApiqrtqeApiqrt∥ep∥Apjq∥`∥Apiq∥qT .

Then using the fact that ∥eX`Y ´eX∥ ď ∥Y ∥e∥X∥`∥Y ∥ [18]
where Y “ ´Apjqrt ´ Apjqrt and X “ ´Apiqrt, we obtain
(11).
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Our error in G, after some manipulation, can be written
as

rF

ż t̂

0

e´ApiqτBpiqdτ ` eApjqpT´t̄q

ż

rt

0

e´ApiqτBpiqdτ

´ eApjqpT´t̄q

ż

rt

0

eApjqτBpjqdτ

from which we obtain

∥ rG∥ ď ∥ rF∥
ż t̂

0

e∥Apiq∥τ∥Bpiq∥dτ

` e∥Apjq∥T
ż ∥rt∥

0

`

e∥Apiq∥τ∥Bpiq∥

` e∥Apjq∥τ∥Bpjq∥
˘

dτ

which gives us (12) after computing integrals. l

The bounds in (11) and (12) guarantee that the errors in
F̂ and Ĝ go to zero as rt, the error in t̂, goes to zero, which
happens when our sampling period T goes to zero. These
bounds also improve if the Apiq’s are approximately equal.

C. Bounds on Estimation Errors

To bound the estimation mean and mean-squared error of
our filter, we denote the filter error by ek – x̂ ´ x, and
the prediction error by zk`1 – xk`1 ´ F̂ x̂k ´ Ĝkuk. With
switching time uncertainty, the error propagates as

ek`1 “ pI ´ KkHqzk`1 ` Kkvk`1 (13)

where in a sampling period in which no switch occurs,

zk`1 “ F̂kek (14)

and in a period where a switch occurs,

zk`1 “ F̂kek ` rFkxk ` rGkuk. (15)

We define the mean squared errors Σk – Ereke
1
ks and

Ωk – Erzkz
1
ks. These update as

Σk`1 “ pI ´ KkHqΩk`1pI ´ KkHq1 ` KkRK 1
k. (16)

where when no switch occurs,

Ωk`1 “ F̂kΣkF̂
1
k (17)

and when a switch occurs,

Ωk`1 “ F̂kΣkF̂
1
k ` F̂kErekx

1
ks rF 1

k ` rFkErxke
1
ksF̂k

` rFkE
“

xkx
1
k

‰

rF 1
k ` F̂kEreksu1

k
rGk

` rFkE rxksu1
k
rG1
k ` rGkukE rxks

1
rF 1
k

` rGkukEreks1F̂ 1
k ` rGkuku

1
k
rG1
k.

(18)

We will need the following:
Assumption 2: Suppose that Pk|k´1 is positive-definite

and bounded above for all k. The upper bound is shown
in [15] while the lower bound is usually ensured by an
additional term in the filter as shown later. Let λ denote
the maximum, and λ the minimum eigenvalue that P´1

k|k´1
can have.

Fact 1 (Observability of error dynamics): In [15] it is
shown that if the sequence pF̂k, Hq uniformly observable
then the sequence pF̂kpI ´ Kk´1Hq, Hq is also uniformly
observable, i.e. there exists ρ3 P Rą0 such that for the same
h as in Definition 1,

ρ3∥e∥2 ď e1

˜

k`h
ÿ

i“k

Φ̄1
i,kH

1R´1HΦ̄i,k

¸

e

for all e, where Φ̄i,k – Fi´1pI ´ Ki´2Hq ¨ ¨ ¨FkpI ´

Kk´1Hq.
We now present a theorem bounding the expected predic-

tion error and mean-squared prediction error.
Theorem 1 (Bounds on prediction error): Given

Assumptions 1 and 2, and suppose E rx1
kxks ă γ2,

and ∥uk∥ ă δ for all k, let

d –
α3

ρ3
λpγ2∥ rFk∥2 ` 2γδ∥ rFk∥∥ rGk∥ ` δ2∥ rGk∥2q

where α3 “ 1 ` α1{α2, α1 ą 0 the largest possible
eigenvalue of H 1Pk|k´1H for all k, and α2 ą 0 the smallest
eigenvalue of R. Then there exist constants β ą 0, ξ ą 0,
and function cp¨q given by

cpaq –
λ

λ

`

a ` β
?
a ` ξ

˘

for a P Rą0, such that for any i P Zą0,

∥E rzk`is∥2 ď max
␣

c
`

∥E rzks∥2
˘

, c pcpdqq
(

(19)

Furthermore, there exist constants ωh ą 0 and ωh´1 ą 0,
such that the prediction MSE is bounded for all times k` j,
j P Zą0 as

trpΩk`jq

ď max

"

λ

λ
ptrpΩkq ` 2ωh´1q ,

λ

λ

ˆ

2λσ3

ρ3
ωh ` 2ωh

˙*

(20)

A proof is provided in the Appendix.
Remark 1 (Estimation Error Bounds): Given the bounds

in Theorem 1, we can also bound E reks and Σk for arbitrary
k using

∥E reks∥ ď ∥I ´ Kk´1H∥∥E rzks∥ (21)

and

trpΣkq ď ∥I ´ Kk´1H∥2trpΩkq ` ∥Kk´1∥2trpRq (22)

which follow from (13) and (16) respectively.
This theorem and remark state that the dwell time condition
ensures that intermittent model uncertainties due to switching
do not lead to unbounded growth in our state estimation
errors. We will now present an algorithm that allows us to
exploit this property.
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Fig. 1. Boost Converter Circuit

IV. JOINT ESTIMATION OF STATE AND SWITCHING

In Theorem 1, the error in the state estimates is driven by
the switching time errors appearing in Lemma 2. We will
augment the IMM extended viterbi [8] with the following
maximum-likelihood approach to estimating the switching
time within a single sample interval,

Jkpτq “ p
`

yk`1|xk`1 “ x̂k`1|k,t̄k“τ

˘

Where x̂k`1|k,t̄“τ is computed either using (4) (5), or
symbolic discretizations of the initial and final modes. We
can search for the optimum of this cost by gridding the
sample period rtk, tk`1q with g points tτiu

g
1, for example

where τi – iT
g ´ T

2g . We can then compute

t̂k “ arg max
τi

Jkpτiq. (23)

There are many gridding schemes that could be equivalently
used here. We can now state Algorithm 1, a heuristic method
which builds on the IMM-EV1 Kalman Filter by including
our gridded switching time estimation. To ensure that λ
exists in Assumption 2, we add ϵI to each Pk|k´1. This
is common practice in the design of practical KFs [19] and
does not affect our analysis, as only bounds on the terms
of the sequence tPku are needed, which are ensured by the
observability condition [8][14].

Algorithm 1 IMM-EV1 Kalman Filter
filter bank tpx̂1

k, P
1
k q, . . . , px̂L

k , P
L
k qu

mode probabilities a1k, . . . , a
L
k

for i from 1 to L do
for j from 1 to L do

compute t̂ijk for switch from i to j using (23)
let bij “ Jkpt̂ijk q

end for
ĵ “ maxj bij

compute x̂i
k`1, and P i

k`1 from x̂ĵ
k, P ĵ

k , and t̂iĵk ,
aik`1 “ biĵa

ĵ
k

end for
normalize aik`1’s

V. SIMULATIONS

In this sections we provide simulations to validate our
theory and joint estimation algorithms.
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Fig. 2. Example state evolution for Boost Converter starting with switches
every 1.2 ms then increasing to every 0.9 ms at 0.02 seconds, blue dashed
line indicates iL and red solid line indicates v0.

T {g (ms) 0.5 0.25 0.167 0.125 0.1
RMSEpiLq (amps) 13.5 10.7 9.40 9.17 9.09
RMSEpv0q (volts) 2.74 2.15 2.00 1.96 1.89

TABLE I
EFFECT OF INCREASINGLY PRECISE GRIDDED SWITCHING TIME

ESTIMATION ON KALMAN FILTER RMSE, 100 TRIALS

A. Boost Converter

A Boost Converter is a popular switching power converter
for stepping up a DC voltage without transformers or am-
plifiers. This is necessary when a high-power source is not
available to perform amplification. A model for a realistic
boost converter is provided in [20]. We have dynamics as
given in (1) where

Ap1q “

„

´R1{L1 0
0 ´1{R0C0

ȷ

,

Ap2q “

„

´R1{L1 ´1{L1

1{C0 ´1{R0C0

ȷ

,

Bp1q “ Bp2q “ r1{L1 0s1

Where x “ riL v0s1 and u “ vin. We additionally choose
y “ v0, or in other words H “ r0 1s. We use the values
R1 “ 2Ω, L1 “ 500µH, R0 “ 50Ω, C0 “ 470µF, and vin “

100 volts from [20]. When switches occur every millisecond,
these parameters result in an output voltage around 110 volts.
Figure 2 shows the result of simulating this system.

We simulated 10 seconds of operation with switch fre-
quencies ranging from 1.2 to 0.9 ms/switch, and output volt-
ages ranging between 100 and 120 volts, with measurement
noise corresponding to R “ 5 volts2. Table I shows how
effective the gridded estimation in (23) is when sampling at
0.35 ms for different values of g. As expected more precision
in the switching time interval leads to more accuracy in the
Kalman Filter estimates.

B. Vehicle Maneuver Tracking

A model of a continuous-time switched system repre-
senting a vehicle moving in two dimensions with x “

4
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Fig. 3. Single trial of vehicle true and estimated trajectories for g “ 1, 2, 5
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Fig. 4. Vehicle Position and Velocity Estimation RMSE over 500 MC
Trials, filtering with g “ 2 shown with red circles, g “ 5 with yellow
squares, and g “ 10 with purple triangles. Blue x’s mark the switching
times.

rx1 9x1 x2 9x2s1 is given by,

Ap1q “ Ap2q “ Ap3q “ I2 b

„

0 1
0 0

ȷ

Bp1q “
“

0 0 0 0
‰1

Bp2q “
“

0 ´1 0 1
‰1

Bp3q “
“

0 1 0 ´1
‰1

where b denotes the Kronecker product, with τd ą 1 second
and measurements sampled every 0.5 seconds. This double-
integrator system corresponds to the discrete time switched
systems used in [8], among others. Its discretization with
ZOH over timestep T is given by

F p1q “ F p2q “ F p3q “ I2 b

„

1 T
0 1

ȷ

(24)

Gp1q “
“

0 0 0 0
‰1

Gp2q “

”

´T 2

2 ´T T 2

2 T
ı1

Gp3q “

”

T 2

2 T ´T 2

2 ´T
ı1

.

We consider a single trajectory over 10 seconds, with uptq “

1, starting in mode 1, swiching to mode 2 at 1.65 seconds, to
mode 3 at 2.75 seconds, and back to mode 1 at 3.9 seconds.
The resulting trajectory is shown in Figure 3 along with
estimate trajectories computed using Algorithm 1 where

H “

„

1 0 0 0
0 0 1 0

ȷ

, R “

„

0.05 0
0 0.05

ȷ

.

We compute the RMSE over 100 monte carlo trials, and
the results for varying divisions, g, of our sampling time are
show in Figure 4.

VI. CONCLUSIONS

We examined the case of intermittent uncertainty in
switched system dynamics due to unknown switching times.
We developed bounds on the Kalman Filter error under
dwell-time constraints which give us intuition for imple-
menting filters like the IMM-EV1 KF. Validating our theory,
simulations of a boost converter and a maneuvering vehicle
showed improvement in the accuracy of filtering algorithms
when we improved the precision of switching time estimates.

An immediate extension is to consider requirements on
control algorithms to satisfy the assumptions in Theorem 1,
as well as relaxing the ZOH and bounding loss of optimality.
It would be interesting to extend these results to nonlinear
problems, for which our analysis could be applied to lin-
earized error dynamics.

APPENDIX
PROOF OF THEOREM 1

From (13)-(15) we get that

E rzk`1s “ F̂kpI ´ Kk´1HqE rzks

when no switch occurs between samples k and k ` 1, and

E rzk`1s “ F̂kpI ´ Kk´1HqE rzks ` rFkE rxks ` rGkuk

when a switch occurs. We use the Lyapunov function

Vk – E rzks
1
P´1
k|k´1E rzks

which from Assumption 2 is positive definite and upper
bounded. We have that

Vk`1 ´ Vk “ ´E rzks
1
H 1S´1

k HE rzks (25)

when no switch occurs, where Sk – HPk`1|kH
1 `R. When

a switch occurs,

Vk`1 ´ Vk “ ´E rzks
1
H 1S´1

k HE rzks

` 2q1P´1
k`1|kΛkE rzks ` q1P´1

k|k´1q.
(26)

where Λk – F̂kpI ´ KkHq and q – rFkE rxks ` rGkuk. It
is derived in [15] that,

E rzks
1
H 1S´1

k HE rzks ď ´
1

α3
E rzks

1
H 1R´1HE rzks

(27)
for α3 ą 0 defined in our theorem. For a switch occurring
between times k and k ` 1 but no switches in the interval

5



Dπ ą 0 s.t. π
„

´I 0
0 d

ȷ

´

«

´
ρ3

α3
I Λ1

kpP´1
k|k´1q1q

q1P´1
k|k´1Λk q1P´1

k|k´1p rFkxk ` rGkukq

ff

ą 0 (31)

Dπ ą 0 s.t.
ρ3
α3

´ π ą 0 and πd ´ q1P´1
k|k´1q ´ p

ρ3
α3

´ πqq1P´1
k|k´1ΛkΛ

1
kpP´1

k|k´1q1q ą 0 (32)

tk`1, . . . , k`hu we then know that Vk`h ´Vk is bounded
above by

´
1

α3
E rzks

1

˜

k`h
ÿ

i“k

Φ̄1
i,kH

1R´1HΦ̄i,k

¸

E rzks

` 2q1P´1
k`1|kΛkE rzks ` q1P´1

k|k´1q.

From uniform observability and Fact 1 we have

Vk`h ´ Vk ď ´
ρ3
α3

∥E rzks∥2 ` 2q1P´1
k`1|kΛkE rzks

` q1P´1
k|k´1q.

(28)

In other words, we now know that

Φ̄1
k`h,kP

´1
k`h|k`h´1Φ̄k`h,k ´ P´1

k|k´1 ď ´
ρ3
α3

I. (29)

We want to show that for a switch occurring between samples
k and k ` 1, the expected prediction error at sample k ` h
satisfies,

#

Vk`h ă Vk if ∥E rzpkqs∥2 ą d

∥E rzpk ` hqs∥2 ă cpdq if ∥E rzpkqs∥2 ď d

for some constant d ą 0, and positive continuous function
cp¨q. We proceed by considering the two cases:

1) Suppose ∥E rzks∥2 ą d. We want to show that

∥E rzks∥2 ą d ñ Vk`h ´ Vk ă 0 (30)

Applying S-procedure [21] to (28), we know that (30) is
true if and only if (31) is true. By Schur complement, this
is equivalent to (32). If we choose π “

ρ3

α3
´ ε for some

small enough ε ą 0, such that if

d ą
α3

ρ3
λpγ2∥ rFk∥2 ` γδ∥ rFk∥∥ rGk∥ ` δ2∥ rGk∥2q

then we satisfy the conditions in (32) and therefore show
that the Lyapunov function decreases before the next switch
occurs. Then the maximum value attained by ∥E rzk`is∥2 for
i ą 0 satisfies

∥E rzk`is∥2 ď
λ

λ

`

∥E rzks∥2 ` β∥E rzks∥ ` ξ
˘

(33)

where
β – 2∥Λ∥pγ∥ rFk∥ ` δ∥ rGk∥q (34)

ξ – γ2∥ rFk∥2 ` γδ∥ rFk∥∥ rGk∥ ` δ2∥ rGk∥2 (35)

2) Suppose ∥E rzks∥2 ď d. Then by substituting d into
(26) we get

Vk`1 ď pλ ´ λminp∥H 1S´1
k H∥qqd ` λβ

?
d ` λξ. (36)

Since we showed that the Lyapunov function is non-
increasing over a timestep with no switch and must decrease
over h or more timesteps with no switch, then (36) gives us
an upper bound on Vi for k ă i ă k ` j where k ` j is the
sample where the next switch occurs. Then

∥E rzk`js∥2 ď cpdq –
λ

λ

`

d ` β
?
d ` ξ

˘

(37)

which is a bound greater than d. If ∥E rzk`js∥2 ą d then
applying (33) to (37) tells us the maximum value attained
by ∥E rzk`is∥2 for i ą 0 must satisfy

∥E rzk`is∥2 ď cpcpdqq (38)

(33) and (38) produce (19).
To prove (20) we will use the following Lyapunov func-

tion,
Wk – trpP´1

k|k´1 ¨ Ωkq

and proceed by similar analysis as with the expected er-
ror. We will use the following Ruhe trace inequality [22,
Fact 5.12.4, p. 333]:

Fact 2: For positive semi-definite Hermitian matrices A
and B with eigenvalues ordered largest to smallest, a1 ě

a2 ě ¨ ¨ ¨ ě an ě 0 and b1 ě b2 ě ¨ ¨ ¨ ě bn ě 0 respectively,
the following holds

n
ÿ

i“1

an´i`1bi ď trpABq ď

n
ÿ

i“1

aibi (39)

which gives us

λtrpΩkq ď trpP´1
k|k´1Ωkq ď λtrpΩkq (40)

where λ and λ are the maximum and minimum eigenval-
ues respectively attainable by P´1

k|k´1 which are given by
Assumption 2. We can bound the update of our Lyapunov
function, Wk`1 ´ Wk, over the step after a switch using
(16)-(18), (39), (40), and the fact that 2E re1xs ď εE re1es `
1
εE rx1xs for arbitrary ε ą 0 as

Wk`1 ´ Wk ď tr
ˆ

`

Φ̄1
k`1,kP

´1
k`1|kΦ̄k`1,k ´ P´1

k|k´1

˘

Ωk

˙

` λε∥F̂k∥∥ rFk∥trpΣkq ` λTk

(41)
where

Tk`1 “ pF̂kE reks ` rFkE rxksq1
rGkuk

` u1
k
rG1
kpF̂kE reks ` rFkE rxksq

`
1

ε
rF 2
kE

“

x1
kxk

‰

` rG2
k∥uk∥2

` F̂kKk´1RK 1
k´1F̂

1
k
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with a switch. The Lyapunov function change over h steps,
Wk`h ´ Wk, is then bounded by

tr
´´

Φ̄1
k`h,kP

´1
k`h|k`h´1Φ̄k`h,k ´ P´1

k|k´1 ` εηI
¯

Ωk

¯

` tr

˜

P´1
k`h|k`h´1

h´1
ÿ

i“0

Φ̄1
k`i|kTk`h´1´iΦ̄k`i|k

¸

where η – λ∥F̂k∥∥ rFk∥∥I ´ Kk´1H∥ and Ti “

∥F̂iKi´1RK 1
i´1F̂

1
i∥ when i ‰ k. From (40) and (29), we

get

Wk`h ´ Wk ď

ˆ

´ρ3
α3

` εη

˙

trpΩkq

` λtr

˜

h´1
ÿ

i“0

Φ̄1
k`h|k`iTk`iΦ̄k`h|k`i

¸ (42)

We choose ε “ ρ3{p2α3ηq, which also affects the value of
Tk. Therefore we see that over any h steps, if the MSE at
time k satisfies

trpΩkq ą
2λα3

ρ3
tr

˜

h´1
ÿ

i“0

Φ̄1
k`h|k`iTk`iΦ̄k`h|k`i

¸

(43)

then Wk`h ´ Wk ď 0. We note that it might be possible to
achieve a better bound with different choice of ε. We must
then consider the fact that unlike for the expected error in
(27), the Lyapunov function Wi can now increase even in
non-switch intervals due to the Tk terms. We will again deal
with this by splitting into two cases. First let ωj be defined
as the upper bound derived from our upper bounds on Fk,
Kk, etc., as well as bounds on rF and rG from Lemma 2, and
bound on ∥E rzks∥ in (19), of the quantity

tr

˜

j´1
ÿ

i“0

Φ̄1
k`j|k`iTk`iΦ̄k`j|k`i

¸

ď ωj ,

for any k. We know that for any j ą 0,

Wk`j ´ Wk ď λωj

Let us consider the two cases:
1) Suppose trpΩkq ą 2λα3

ρ3
ωh. Then (41) and (42) tell us

that Wk`h ă Wk and the maximum value between k and
k ` h is bounded as

trpΩk`jq ď
λ

λ
ptrpΩkq ` ωh´1q for j P tk, . . . , k ` hu,

(44)
which is also the maximum value attained until some
trpΩk`jq ď λα3

ρ3
ωh, since the value cannot increase over h

steps otherwise. This brings us to our next case:
2) Suppose trpΩkq ď 2λα3

ρ3
ωh. Now the maximum value

that trpΩk`1q could attain is

trpΩk`1q ď
λ

λ

ˆ

2λα3

ρ3
ωh ` ω1

˙

If we achieved the maximum then trpΩk`1q ą 2λα3

ρ3
ωh,

so Wk`h`1 ď Wk`1 and therefore the maximum value of

trpΩk`jq for all j ą 0 is bounded as

trpΩk`jq ď
λ

λ

ˆ

2λα3

ρ3
ωh ` ωh

˙

j P Zą0 (45)

with (44) and (45) combine to prove (20), with an additional
ωh´1 or ωh added to each to account for the case of starting
in non-switch timestep. l
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