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Stabilization of Networked Control Systems
Under Clock Offsets and Quantization
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Abstract—This paper studies the impact of clock mis-
matches and quantization on networked control systems.
We consider a scenario where the plant’s state is measured
by a sensor that communicates with the controller through a
network. Variable communication delays and clock jitter do
not permit a perfect synchronization between the clocks of
the sensor and controller. We investigate limitations on the
clock offset tolerable for stabilization of the feedback sys-
tem. For a process with a scalar-valued state, we show that
there exists a tight bound on the offset above which the
closed-loop system cannot be stabilized with any causal
controllers. For higher dimensional plants, if the plant has
two distinct poles, then the effect of clock mismatches can
be canceled with a finite number of measurements, and
hence there is no fundamental limitation. We also consider
the case where the measurements are subject to quantiza-
tion in addition to clock mismatches. For first-order plants,
we present necessary conditions and sufficient conditions
for stabilizability, which show that a larger clock offset re-
quires a finer quantization.

Index Terms—Clock offsets, continuous time systems,
networked control systems, stabilizability, time-varying
sampling periods, quantization.

I. INTRODUCTION

THE components of networked control systems are of-
ten spatially distributed and hence need to communicate

through digital networks. A significant challenge in such sys-
tems is that the processors in the components may not share a
common notion of time, because their local clocks are not prop-
erly synchronized; see survey papers [1], [2]. Quantization is
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another significant challenge to the design of networked control
systems, as surveyed in [3] and [4] and motivated the study of bit-
rate constraints in channels [5] and limited capabilities of sen-
sors/actuators [6]. In this paper, we consider clock mismatches
and quantization simultaneously and study the impact of such
imperfections on the stability of feedback control systems.

With a growing demand for digital communication, there has
been a vast amount of research providing clock synchroniza-
tion methodologies over networks; see, e.g., [7]–[9] and the
survey papers [10], [11]. Moreover, the global positioning sys-
tem (GPS) has allowed us to have access to a global clock that
has been used in many practical systems. However, we cannot
attain perfect synchronization in most practical situations. In
fact, the work in [12] has shown that synchronization of clocks
with unknown skews and offsets is impossible in the presence
of unknown communication delays. Furthermore, recent works
[13], [14] have pointed out that GPS signals can be spoofed and
hence are vulnerable against attacks.

In this paper, we consider feedback systems where the sen-
sor measuring the plant state and the controller do not share a
common clock. This asynchronism results in measurement that
can cause fundamental limitations in our ability to stabilize a
system through feedback. The clock mismatches cause uncer-
tainty on sampling instants, which has been recognized as an
important topic in control as there are many related works [15]–
[20]. Precision of sensor clocks is of interest also from practical
viewpoints. In [21], an algorithm exploiting time-stamps is pre-
sented which can compensate delays in a distributed control
system. In mechatronic systems where sampling periods are
fast (less than 1 ms), the effect of clock mismatches becomes
relatively severe and hence compensation methodologies would
be employed [22].

We consider the situation in which the clock offset between
the sensor and the controller is known to be bounded, but its
precise value is unknown and potentially time varying. Our
objective is to clarify limitations on the tolerable clock offsets for
stability. We first consider the case in which the communication
channel has unlimited bandwidth and thus can convey real-
valued state measurements. In such configuration, for a process
with a scalar-valued state, we derive a necessary and sufficient
condition for stabilizability, which gives a tight upper bound
on the clock offset beyond which stabilization is impossible. In
contrast, for a process with a vector-valued state, there exists no
fundamental limitation on the offset if the plant has at least two
distinct modes.
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We also consider the scenario where the sensor measurements
must be quantized to discrete values. We consider quantizers
that are static piecewise constant functions, which map the ob-
served state to a discrete set of values. We focus our attention
on two types of quantizers that have been widely considered
in the literature: Logarithmic quantizers [23]–[25] and uniform
quantizers [26]–[28]. It has been shown that, by itself, quanti-
zation imposes fundamental limitations on stabilizability [23],
[28], [29]. Here, we introduce the additional complexity of clock
mismatch and derive necessary conditions and sufficient con-
ditions on coarseness of the quantizer and the maximum clock
offset for stabilizability. The conditions provide explicit rela-
tionships between the tolerable clock offsets and the required
quantization levels for stabilizability.

Stabilization of systems with uncertain sampling intervals
have been studied in various ways. It has been regarded as
systems with input delay [15], [16] and uncertain impulsive
systems [17], [18]. Polytopic overapproximation [19] and the
gridding approach [20] are also notable as an instrument to
deal with such uncertainty. These papers restrict their atten-
tion to linear time-invariant (LTI) controllers and sufficient
conditions are provided. In a recent work [30], we employed
a time-stamp aware estimator and investigated the stabiliza-
tion problem with static clock offsets. The problem is mod-
eled as simultaneous stabilization for parametric uncertainty,
and a sufficient condition for the existence of stabilizing LTI
controllers is given. Now we consider time-varying clock off-
sets and the controller’s class which includes general causal
systems. We present necessity results for stabilizability rather
than only sufficiency ones. These results thus characterize fun-
damental requirements on the accuracy of local clocks for
stabilizability.

For the analysis of stabilizability, we compute the state esti-
mation set and investigate under which conditions it shrinks over
time. By computing the tight estimation set and its decay rate,
we are able to show necessity results. It is worth noticing that in
the literature listed above contraction of Lyapunov functions or
Lyapunov–Krasovskii functionals are studied to verify stability.
We also note recent works [31], [32] that fall in this context.
While in our approach the decay rate is determined exactly, it
is not in the literature, which leads flexibility for the extensions
to the cases with disturbances and uncertainties in addition to
clock offsets.

This paper is organized as follows. We formally state the
problem in Section II and introduce the notion of tight state
estimation sets in Section III. In Section IV, we consider the
case where there is no quantization and present conditions for
stabilizability under clock offsets. The setup is extended to the
case of quantized measurements in Section V, and stabiliza-
tion under both clock offsets and quantization is considered in
Section VI. Finally, we provide concluding remarks in Section
VII. A subset of the results in Section IV appeared in the con-
ference paper [33].

Notations: Z+ denotes the set of nonnegative integers, 0
(bold-faced zero) stands for the zero vector of appropriate di-
mension, and ‖ · ‖ represents the Euclidean norm.

Fig. 1. Feedback system.

Fig. 2. Time chart.

II. PROBLEM FORMULATION

Consider the feedback system depicted in Fig. 1. The plant to
be controlled is the following continuous-time LTI process:

ẋ(t) = Ax(t) + Bu(t) (1)

where x(t) ∈ Rn is the state and u(t) ∈ Rm is the input. The
unknown initial state x(0) may be anywhere in Rn . We introduce
the following assumption on the plant.

Assumption 1: The system (1) is unstable and controllable,
and A is invertible.

It is common in the literature (e.g., [28], [29]) to consider un-
stable and controllable systems to make the stabilization prob-
lem nontrivial, as any component of the state that belongs to a
stable invariant subspace of A will converge to zero, provided
that the control signal converges to zero. We note that even if A
is singular, that does not change the stabilizability of the plant
for clock synchronization errors. Suppose that A has a zero
eigenvalue and the corresponding state is decomposed. By let-
ting the input to the state be zero during a sampling period, the
state will be observed exactly. Once it is known, the controller
can bring it to the origin because of controllability. Thus we
assume that A is nonsingular.

The sensor attempts to sample the state periodically with
period T , but does not necessarily achieve it due to clock errors.
Let yk , k ∈ Z+ , be the kth observed state, and let T > 0 be the
desired sampling period from the perspective of the controller
clock. Fig. 2 illustrates a time chart of sampling: The actual
time instants kT + δk at which the samples yk are generated are
represented by the crosses, whereas the gray boxes represent
the uncertainty δk inherent to the timing information due to the
offset between the clocks of the sensor and the controller. We
consider the case in which the magnitude of the clock offset is
bounded.

Assumption 2: For all time k ∈ Z+ , δk is bounded as

0 ≤ δk ≤ Δ < T (2)

with a constant Δ.
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There are various algorithms for the clock offset estimation,
and the resulting estimation errors have been analyzed; see, e.g.,
[34]. These results can be used to determine the offset bound Δ.
The positiveness of the offset δk introduces no loss of generality,
as it can always be guaranteed by an appropriate redefinition of
the time scale. Under Assumption 2, the sequence yk of observed
states is produced by the following model:

yk = x(kT + δk ), δk ∈ [0,Δ] (3)

where the actual sampling instant kT + δk is unknown because
of the unknown jitter δk . We note that the controller cannot
determine the precise value of δk based on the time instant at
which the sample yk arrives because of unknown communica-
tion delay.

Using the received observations y0 , . . . , yk , the controller
needs to construct the input u(t), t ≥ 0. We consider the fol-
lowing assumption.

Assumption 3: The control input is constant during [kT, kT
+ Δ] for every k:

u(t) = uk , ∀t ∈ [kT, kT + Δ] ∀k ∈ Z+

and u(t) does not depend on the future measurements {yk :
kT + Δ ≥ t}.

This assumption guarantees causality, but it also implies that
during the intervals in which the sensor may measure the plant
state, the controller holds the input. During the period t ∈ (kT +
Δ, (k + 1)T ) for which the state has been measured, we allow
the controller to take any value.

Our objective is to clarify how large Δ can be to ensure the
stabilizability of the system.

Remark 1: Assumption 3 is required to prove the necessity
results in the paper. We note that the sufficient conditions for
stabilizability that we present in Sections IV and VI hold even
if we limit the class of controllers to piecewise constant ones,
for which Assumption 3 trivially holds.

III. COMPUTATION OF ESTIMATION SETS

In Sections III and IV, we consider a feedback system with no
quantization and study the effect of clock mismatches between
the sensor and the controller on the stabilizability of the system.

Here, we introduce the notion of a tight state estimation set,
which will be instrumental to establish the necessity results in
the paper. Let I−k denote the set of plant states x(kT ) that are
compatible with all the measurements y0 , y1 , . . . , yk−1 taken
before time kT . We shall call this the estimation set of x(kT ).
Given I−k , we now study how to update the estimation set of
x(kT ) using the new observation yk . From (3), yk is given by

yk = eAδk (x(kT ) + Ψ(δk )uk ) (4)

where Ψ(δk ) :=
∫ δk

0 e−AsBds. Thus, yk depends on the un-
known parameter δk ∈ [0,Δ] and the true state x(kT ). Once yk

is known, x(kT ) must lie in the following set Jk :

Jk =
{

e−Aδk yk − Ψ(δk )uk : δk ∈ [0,Δ]
}

. (5)

Here, the second equality follows by Assumptions 1 and 3. With
this set Jk , after receiving yk , we obtain an updated estimation

set Ik that now also considers the measurement yk and can be
defined by

Ik := I−k ∩ Jk . (6)

Since I−0 = Rn , (6) leads to I0 = J0 . The estimation set I−k+1
at the next time x((k + 1)T ) is constructed from Ik using the
model (1) and is given by

I−k+1 =

{

eAT xk +
∫ (k+1)T

kT

eA((k+1)T −τ )Bu(τ)dτ : xk ∈ Ik

}

.

(7)
The set Ik defined in (6) is a tight estimation set of x(kT ) in

the following sense: For every xk ∈ Ik , there exists a trajectory
for the state x(t), t ∈ [0, kT + Δ], that produces y0 , y1 , . . . , yk

with possible delays {δi ∈ [0,Δ]}k
i=0 and satisfies x(kT ) = xk .

We formally define tightness of an estimation set below.
Definition 1: An estimation set Ik ⊂ Rn of x(kT ), which is

constructed from I−0 , u(t), t ∈ [0, kT + Δ], and y0 , y1 , . . . , yk ,
is said to be tight if for every xk ∈ Ik , there exist x0 ∈ I−0 and
{δi ∈ [0,Δ]}k

i=0 , such that

eAkT x0 +
∫ kT

0
eA(kT −τ )Bu(τ)dτ = xk (8)

eA(iT +δi )x0 +
∫ iT +δi

0
eA(iT +δi −τ )Bu(τ)dτ = yi

∀i ∈ {0, 1, . . . , k}. (9)

The following result is a direct consequence of the construc-
tion outlined above for estimation sets.

Proposition 1: The estimation set Ik defined in (6) is tight
in the sense of Definition 1.

IV. STABILIZABILITY WITH INFINITE BIT-RATE

We start with the case where (1) is a process with a scalar-
valued state and derive a tight bound on the maximum offset
Δ for stabilizability. We then show that for a process with a
vector-valued state case, clock offsets do not necessarily limit
stabilizability.

We employ the following stabilizability definition.
Definition 2: The plant (1) is stabilizable if for any sequence

of offsets {δk}∞k=0 , δk ∈ [0,Δ], and any initial state x(0) ∈ I−0 ,
there exists a feedback controller such that the closed-loop state
converges to the origin, i.e., limt→∞ x(t) = 0.

A. Process with a Scalar-Valued State

Consider the following controllable, unstable process where
the state is scalar:

ẋ(t) = λx(t) + bu(t). (10)

From controllability in Assumption 1, we assume without loss
of generality that b = 1 and, from instability, that λ > 0.

Theorem 1: Let Assumptions 1–3 hold. Then the plant (10)
is stabilizable in the sense of Definition 2, if and only if the
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Fig. 3. Upper bound on Δ versus sampling period T (λ = 1.0): The
solid line is the active bound Δ̄ and the vertical dotted lines indicate
T = (ln 2)/λ (left) and T = (ln 3)/λ (right), respectively.

bound on the offset satisfies 0 ≤ Δ < Δ̄, where

Δ̄ :=

{
T if 0 < T ≤ 1

λ
ln 3

T − 1
λ

ln(eλT − 2) if T > 1
λ

ln 3.
(11)

The bound T − {ln(eλT − 2)}/λ in the lower branch of (11)
is monotonically decreasing with respect to λ and T . This ob-
servation is consistent with the intuition that a larger growth
rate eλT during one sampling period will result in a tighter re-
quirement on the clock accuracy. The limitation Δ̄ = T for the
case 0 < T < (ln 3)/λ arises directly from Assumption 2. Fig. 3
shows the value of Δ̄ versus the sampling period T for the plant
(10) with λ = 1.0.

Remark 2: In [30, Th. 14], a bound on clock offsets for sta-
bilizability of a first-order system has also been given. Although
the setup is slightly different from the present paper, it is worth
noticing that both bounds decay exponentially with respect to
the period T . In [30], the offsets are assumed to be static and
the controller is taken as LTI. Thus, Theorem 1 provides the
limitation compatible for a more general setup.

Our approach to prove Theorem 1 is based on the analysis of
the estimation sets introduced in Section III. For the plant (10),
by (5), the estimation set Jk computed from yk can be written
as

Jk =
{

e−λδk
(
yk + λ−1uk

)
− λ−1uk : δk ∈ [0,Δ]

}
. (12)

Thus, Jk becomes a bounded interval in R. Therefore, with (6)
and (7), Ik and I−k+1 , k ∈ Z+ , also result in bounded intervals
in R. Notice that we have assumed I−0 = R.

Let lk be the length of the interval Ik , which is the updated
estimation set of x(kT ) defined in (6). In the following, we
study whether or not lk → 0 from which we will be able to
conclude stabilizability. Suppose that Ik−1 is obtained based on
y0 , y1 , . . . , yk−1 at t = (k − 1)T + Δ. Then, one can compute
I−k from (7). The length lk is determined by I−k and Jk , thus, lk
depends on the true state xk ∈ I−k , the jitter δk ∈ [0,Δ], and the

Fig. 4. Update procedure of the estimation set: (a) The initial estima-
tion set Ĩ−

k
expands during the sensing interval [kT, kT + Δ]. (b) After

receiving ỹk , the controller computes the set J̃k of the candidates of the
state at kT which may result in ỹk somewhere in [kT, kT + Δ]. (c) The
updated estimation set Ĩk is obtained as the intersection of Ĩ−

k
and J̃k .

input u(t), t ∈ ((k − 1)T + Δ, kT ). To prove that we are able
to stabilize the closed loop for all possible xk and δk , we have to
consider the worst case trajectory. Hence, we need to determine
under which conditions we have

min
u(t),t∈((k−1)T +Δ ,kT )

max
xk ∈I−

k ,δk ∈[0,Δ]
lk �→ 0 as k → ∞

from which we would conclude that no controller could result
in a decrease of the interval Ik to a single point and therefore
that there are trajectories for which xk does not converge. The
following lemma is the key technical result needed to prove
Theorem 1 as it gives the expansion rate of lk .

Lemma 1: Given an estimation set Ik−1 with width lk−1 , for
every k ≥ 1, it follows that

min
u(t),t∈((k−1)T +Δ ,kT )

max
xk ∈I−

k ,δk ∈[0,Δ]
lk =

(1 − e−λΔ)eλT

2
lk−1

(13)
where the minimum is achieved with any input that places the
interval

{
xk + λ−1uk : xk ∈ I−k

}
symmetrically about the ori-

gin.
Proof: For simplicity of notation, we first introduce biased

sets as follows: Define ỹk := yk + λ−1uk and let J̃k := {x +
λ−1uk : x ∈ Jk}. Then, from (12), this biased estimation set J̃k

can be simply represented as

J̃k =

⎧
⎪⎨

⎪⎩

[
e−λΔ ỹk , ỹk

]
if ỹk > 0

{0} if ỹk = 0
[
ỹk , e−λΔ ỹk

]
if ỹk < 0.

(14)

Similarly, we define the biased sets

Ĩ−k :=
{
xk + λ−1uk : xk ∈ I−k

}

Ĩk := Ĩ−k ∩ J̃k =
{
xk + λ−1uk : xk ∈ Ik

}
.

Note that the length lk of Ik is the same as that of Ĩk and the
analysis in this proof holds for any bias λ−1uk . In Fig. 4, we
illustrate the update procedure for the estimation set.

We now show that the input u(t), t ∈ ((k − 1)T + Δ, kT ),
achieving the minimum in (13) is the one that makes Ĩ−k symmet-
ric about the origin. In what follows, we evaluate the worst case
length maxxk ,δk

lk for a given Ĩ−k . We start by describing the
range of yk under the knowledge that xk ∈ I−k and δk ∈ [0,Δ].
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With (4), the set of all possible yk is as follows:

yk ∈
{

eλδk xk + λ−1(eλδk − 1)uk : xk ∈ I−k , δk ∈ [0,Δ]
}

which results in

ỹk ∈
{

eλδk z : δk ∈ [0,Δ], z ∈ Ĩ−k

}
. (15)

Thus, we can rewrite the maximization term in (13) as

max
xk ∈I−

k ,δk ∈[0,Δ]
lk = max

ỹk ∈{eλδ k z :δk ∈[0,Δ],z∈Ĩ−
k }

lk .

Next, we evaluate maxỹk
lk for each variation of Ĩ−k , and

then compute its minimum over u(t), t ∈ ((k − 1)T + Δ, kT ).
In the rest of the proof, we assume ỹk �= 0 since it follows from
(14) that ỹk = 0 does not maximize lk . Denote the lower bound
and the upper bound of Ĩ−k by p and q, respectively: Ĩ−k = [p, q].
Suppose that

|p| ≤ |q| (16)

i.e., the midpoint of Ĩ−k is nonnegative. For the case |p| > |q|,
one can apply the same discussion below by flipping signs.

Consider the following two cases.
1) p ≤ 0: In this case, it follows that q ≥ 0 from (16) and

thus, Ĩ−k contains the origin. By (14), we have

Ĩk =

{[
e−λΔ ỹk ,min(q, ỹk )

]
if ỹk > 0

[
max(p, ỹk ), e−λΔ ỹk

]
if ỹk < 0.

Taking maximums in both cases ỹk > 0 and ỹk < 0, and using
(16), one can see that the length lk is maximum when ỹk = q

max
ỹk ∈{eλδ k z :δk ∈[0,Δ],z∈Ĩ−

k }
lk = (1 − e−λΔ)q.

The right-hand side takes its minimum under (16) and 1) for
the case in which q = −p = eλT lk−1/2, and the minimum is

min
u(t),t∈((k−1)T +Δ ,kT )

max
xk ∈I−

k ,δk ∈[0,Δ]
lk =(1 − e−λΔ)

eλT

2
lk−1 .

(17)
2) p > 0: In this case, noticing that all possible ỹk are positive

from (15), we obtain

Ĩk =
[
max(p, e−λΔ ỹk ),min(q, ỹk )

]
.

Therefore

max
ỹk ∈{eλδ k z :δk ∈[0,Δ],z∈Ĩ−

k }
lk =

{
(1 − e−λΔ)q if e−λΔq ≥ p
q − p if e−λΔq < p.

(18)
From the condition 2) and (7), we have q > q − p = eλT lk−1 .
Thus, both branches in (18) are greater than the right-hand side
of (17). Hence, Ĩ−k satisfying 2) cannot minimize maxỹk

lk ,
which concludes the proof of Lemma 1. �

Proof of Theorem 1: (Sufficiency) If Δ < Δ̄, then we have
that γ := (1 − e−λΔ)eλT /2 < 1. Thus, from Lemma 1, for a
given estimation set Ik−1 of x((k − 1)T ), there exists a control
input resulting in lk < γlk−1 for all δk and xk−1 ∈ Ik−1 . Such
control input can be constructed as follows: Divide the interval
((k − 1)T + Δ, kT ) into two parts of equal length. In the first
time period, the controller applies a constant input which makes

Fig. 5. Behavior of the system (λ = 1.0, T = 2.0, Δ̄ ≈ 0.32): The plant
state x(t) (solid), the input u(t) (dashed), the observations yk (cross),
and the estimation sets Ik (: upper bounds, �: lower bounds). (a)
Δ = 0.30 < Δ̄ ≈ 0.32. (b) Δ = 0.45 > Δ̄ ≈ 0.32.

I−k symmetric about λ−1uk . As we see in the proof of Lemma 1,
this control input minimizes maxxk ,δk

lk , which is the length of
the estimation set Ik in the worst case. In the second time period,
the control input is simply set to 0. This control input satisfies
Assumption 3 and simplifies the calculation of the estimation
set Jk given by (5). Repeating this procedure for each sampling
period, we can make the sequence lk converge to 0, which
implies the stability of the feedback system.

(Necessity) When γ := (1 − e−λΔ)eλT /2 ≥ 1, the sequence
lk does not converge to zero, no matter how we choose u(t).
This means that there always exist a positive constant ε and a
sequence of integers k1 , k2 , . . . such that lki

≥ ε, ∀i. Since Ik

is a tight estimation set, this means that there exists a possible
trajectory of x(t) such that |x(tki

)| ≥ ε/2, ∀i and therefore x(t)
does not converge to zero. �

We now present a numerical example to illustrate the behavior
of the system.

Example 1: Consider the system (10) with λ = 1.0 and the
nominal sampling period T = 2.0. The initial state is taken to be
x(0) = 1 and the δk are chosen uniformly randomly from [0,Δ].
We employ the control law mentioned in the proof of Theorem 1,
which minimizes the length of the worst case estimation set. We
first consider the case of a small offset bound that satisfies the
stability condition in Theorem 1: suppose Δ = 0.30, which is
less than Δ̄ ≈ 0.32. In Fig. 5(a), we illustrate the state x(t) and
the input u(t) by the solid line and the dashed line, respectively.
Moreover, the observations yk are depicted by the cross marks
and the upper and lower bounds of the estimation sets Ik are
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represented by  and �, respectively. One can observe that, as
time progresses, the upper bounds and the lower bounds of Ik

become closer, and the state successfully converges to 0. Next,
we consider the case Δ = 0.45, which violates the stability
limit Δ̄ ≈ 0.32. Fig. 5(b) shows the behavior of the system in
this case. We see that the state (solid line) oscillates and the
estimation set Ik (triangle marks) does not shrink to a single
point.

B. Process with a Vector-Valued State

In this section, we consider plants where A is not scalar.
Theorem 2: Let Assumptions 1–3 hold. If A has at least two

distinct eigenvalues, then for any Δ satisfying (2), the plant (1)
is stabilizable in the sense of Definition 2 and the state can be
taken to the origin in a finite time.

Theorem 2 follows from the lemma below and the controlla-
bility of the system.

Lemma 2: If A has at least two distinct eigenvalues, then
for any initial state and for any Δ satisfying (2), there exists
a control input such that the state of (1) can be reconstructed
precisely with a finite number of measurements.

Proof: See Section IV-C. �
In view of Theorem 2, and unlike in the scalar case, there is

no practical limitation on the clock offset if the plant dynam-
ics has two distinct eigenvalues. Intuitively, we can explain this
result as follows: At the time after receiving the measurement
yk = x(kT + δk ), the controller has n + k + 1 unknown vari-
ables, i.e., x(0) and δ0 , . . . , δk . On the other hand, the measure-
ments y0 , y1 , . . . , yk provide 2(k + 1) equations that constrain
these unknowns. If these equations were linear and indepen-
dent, then one could determine the exact state in k steps as soon
as 2(k + 1) ≥ n + k + 1. In reality they are not, but when A
has two distinct eigenvalues, using an appropriate input signal
u(t) they provide enough “independence” to recover the initial
state. Moreover, since the plant is controllable, once its state is
precisely known, there exists an input that drives the state to the
origin in a finite time interval.

We now show an example where I1 becomes a single point.
In this example, we can make the state converge to zero using
only two observations y0 and y1 .

Example 2: Consider the following system:

A =
[

2 0
0 1

]

, B =
[

1
1

]

, T = 1.5, Δ = 1.0.

Notice that Δ is greater than the bound (11) in the scalar
case for each eigenvalue, 2 and 1, of A since T − {ln(e2T

− 2)}/2 ≈ 0.052 and T − ln(eT − 2) ≈ 0.59. In Fig. 6, we plot
the estimation sets I0 , I−1 , and J1 computed based on y0 and
y1 in the state space R2 . Since we assume I−0 = R2 , I0 is
equal to J0 . Note that the unknown states x(0) and x(T ) are
not used to compute the estimation sets. The figure shows that
I−1 ∩ J1 = I1 , which contains a single possible value for x(T ).

C. Proof of Lemma 2

As a preliminary of the proof, we first introduce a subsys-
tem of (1) associated with the two distinct eigenvalues. If there

Fig. 6. Estimation sets I0 , I−1 , and J1 in the state space R2 (horizontal
axis: first element of x, vertical axis: second element of x).

exist eigenvalues λ1 , λ2 ∈ R of A such that λ1 �= λ2 , via an
appropriate coordinate transformation, we have

V −1 ẋ(t) =

⎡

⎢
⎣

λ1 0 0

0 λ2 0

∗ ∗ ∗

⎤

⎥
⎦V −1x(t) + V −1Bu(t)

for some nonsingular matrix V ∈ Rn×n ; otherwise there ex-
ist λ, θ ∈ R with θ �= 0 such that the complex conjugate pair
λ + iθ, λ − iθ are eigenvalues of A, and via an appropriate co-
ordinate transformation, we have

V −1 ẋ(t) =

⎡

⎢
⎣

λ θ 0

−θ λ 0

∗ ∗ ∗

⎤

⎥
⎦V −1x(t) + V −1Bu(t)

for some nonsingular matrix V ∈ Rn×n [35, pp. 152–153].
Extracting the first two rows of the above system, we obtain the
subsystem

ξ̇(t) = Λξ(t) + ν(t), ζk = ξ(kT + δk ) (19)

where ξ and ν are the corresponding states and the inputs, re-
spectively, and ζk is the output, i.e., the first two elements of
V −1yk . For the case of two distinct real eigenvalues λ1 , λ2 , the
matrix Λ := diag(λ1 , λ2); for the case of a complex conjugate
pair of eigenvalues λ + iθ, λ − iθ, the matrix

Λ :=
[

λ θ
−θ λ

]

.

For the first step of the proof, we compute estimation sets for
the state ξ(kT ) based on the measurements y0 , . . . , yk . Instead
of the estimation sets of x represented by Jk , Ik , and I−k+1 , which
are defined in (5)–(7), we denote the corresponding estimation
sets of ξ by Ĵk , Îk , and Î−k+1 . In light of I0 = J0 and (7), the

estimation set Î−1 of ξ(T ) is expressed as

Î−1 =
{

e−Λδ0 â0 + b̂0 : δ0 ∈ [0,Δ]
}

.
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Here, â0 and b̂0 are defined as follows: Let νk be the first two
elements of V −1Buk . Then, â0 and b̂0 are defined as

â0 := eΛT (ζ0 + Λ−1ν0)

b̂0 := −eΛT Λ−1ν0 +
∫ T

0
eΛ(T −τ )ν(τ)dτ. (20)

Note that Λ is nonsingular since A is invertible. Moreover, by
(5), it follows that

Ĵ1 =
{

e−Λδ1 â1 + b̂1 : δ1 ∈ [0,Δ]
}

where

â1 := ζ1 + Λ−1ν1 , b̂1 := −Λ−1ν1 . (21)

1) Finiteness of Î1 : The first step of the proof is to show
that there exists a control input ν(t), t ∈ [0, T + Δ], that makes
the updated estimation set Î1 = Î−1 ∩ Ĵ1 contain at most a finite
number of points. To do so, we need to consider the following
problem: Let a, b, and c be nonzero vectors in R2 ; also fix
[T1 , T2 ] ⊂ R and [T3 , T4 ] ⊂ R. Define functions f : [T1 , T2 ] →
R2 and g : [T3 , T4 ] → R2 as

f(t) := eΛta, g(t) := eΛtb + c (22)

and find the intersection of {f(t) : t ∈ [T1 , T2 ]} and {g(t) : t ∈
[T3 , T4 ]}. The following lemma states that this intersection can
be a set of finite points if a, b, and c are chosen appropriately.

Lemma 3: If at least one of the vectors a, b, and c is not an
eigenvector of Λ, then the intersection of the sets F := {f(t) :
t ∈ [T1 , T2 ]} and G := {g(t) : t ∈ [T3 , T4 ]} contains, at most, a
finite number of points.

Proof: See Section IV-D. �
Consider the statement of Lemma 3 with a = â0 , b = â1 , and

c = b̂0 − b̂1 . Then, Î1 corresponds to the intersection of F and
G. Note that â0 and â1 can be assumed to be nonzero since if
either â0 = 0 or â1 = 0, then Î−1 or Ĵ1 becomes a single point,
and the result is trivially true.

In what follows, we show that there exists an input such
that b̂0 − b̂1 is not equal to 0 nor is an eigenvector of Λ. From
Assumption 3, ν(t) takes a constant value ν0 for t ∈ [0,Δ], thus,
it follows from (20) and (21) that

b̂0 − b̂1 = −Λ−1eΛ(T −Δ)ν0 +
∫ T

Δ
eΛ(T −τ )ν(τ)dτ + Λ−1ν1 .

Note that the first and the third terms in the right-hand side
are known to the controller. Furthermore, the integral term is
the zero-state-response of (19). Because of the controllability of
the original system (1), x(kT ) or ξ(kT ) can be set arbitrarily,
and hence b̂0 − b̂1 can be made an arbitrary vector by selecting
an appropriate input ν(t), t ∈ (Δ, T ). Thus, with an input ν(t)
such that b̂0 − b̂1 is not 0 nor an eigenvector of Λ, it follows
from Lemma 3 that Î1 becomes a set of finite points.

2) Stabilizing the System with the Finite Set Î1 : The sec-
ond step of the proof consists of providing a procedure to deter-
mine the value of the state once Î1 contains only a finite number
of points and bring it to the origin. Consider the subsystem (19)
of (1). From the first step, we can pick the control signal so that

Î1 is a set with a finite number of points. For each element of
Î1 , we can determine corresponding δ1 and x(2T ) as follows.
Pick a point ξ1 ∈ Î1 . From (19), we have that

ζ1 = eΛδ1 ξ1 +
∫ δ1

0
eΛ(δ1 −τ )ν(τ + T )dτ

= eΛδ1
(
ξ1 + Λ−1ν1

)
− Λ−1ν1 .

Thus, if ξ1 �= −Λ−1ν1 , δ1 is uniquely determined from vari-
ables known to the controller. When ξ1 = −Λ−1ν1 , we select
the input so that ξ2 := eΛT ξ1 +

∫ T

0 eΛ(T −τ )ν(τ + T )dτ satis-
fies ξ2 �= −Λ−1ν2 , which is always possible in view of control-
lability. In this case, the set Î2 would continue to be finite, and
we would be able to determine the corresponding δ2 using a
similar procedure. For simplicity, in the remainder of the proof
we shall assume that we have determined δ1 , but the reasoning
would be similar if we had δ2 instead. For the value of δ1 so
obtained, we can compute x(T ) by solving

y1 = eAT x(T ) +
∫ δ1

0
eA(δ1 −τ )Bu(τ + T )dτ

and can compute x(2T ) using the variation of constants formula.
From controllability, the controller can bring this point x(2T )
to the origin by an appropriate open-loop input u(t) for t ∈
(2T + Δ, 3T ). The next output y3 takes a nonzero value only
if the selected point ξ1 that we used to estimate x(2T ) does
not correspond to the true state trajectory. Hence, we reduce
the number of elements of Îk at least by one element in one
sampling interval (or two periods, in case we had to consider
δ2). Repeating this procedure, we eventually obtain yk = 0,
which means that the origin has been reached.

D. Proof of Lemma 3

The proof of Lemma 3 is based on the following corollary of
the mean-value theorem.

Corollary 1: Consider two continuous functions τ1 , τ2 :
S → R defined on a finite interval S ⊂ R. Suppose there are
two distinct points s1 , s2 ∈ S such that

τ1(s1) − τ2(s1) = τ1(s2) − τ2(s2)

and τ1 , τ2 are differentiable in (s1 , s2). Then there exists a point
s∗ ∈ (s1 , s2) such that the derivatives

τ ′
1(s

∗) = τ ′
2(s

∗).

Proof: Define the function Δτ : S → R by Δτ (s) := τ1(s)
− τ2(s). Then Δτ (s1) = Δτ (s2). Following the mean-value
theorem, there exists s∗ ∈ (s1 , s2) such that

τ ′
1(s

∗) − τ ′
2(s

∗) = Δ′
τ (s∗) =

Δτ (s2) − Δτ (s1)
s2 − s1

= 0.

�
Define the set

U := {(t, s) ∈ [T1 , T2 ] × [T3 , T4 ] : f(t) = g(s)}. (23)

Then F ∩ G is infinite only if U is infinite. In the following, we
assume that U is infinite and prove the claim of Lemma 3 by
contradiction.
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1) Case of Two Distinct Real Eigenvalues: From invert-
ibility in Assumption 1, we assume without loss of generality
that λ1 and λ2 are both nonzero. Denote

a =
[

a1
a2

]

, b =
[

b1
b2

]

, c =
[

c1
c2

]

with scalars a1 , a2 , b1 , b2 , c1 , c2 ∈ R. From

eΛt =

[
eλ1 t 0
0 eλ2 t

]

it follows that

f(t) =

[
a1e

λ1 t

a2e
λ2 t

]

, g(t) =

[
b1e

λ1 t + c1

b2e
λ2 t + c2

]

.

For the set U defined by (23), (t, s) ∈ U if and only if

a1eλ1 t = b1eλ1 s + c1 , a2eλ2 t = b2eλ2 s + c2 . (24)

In the following, we transform (24) into two formulas for t
in terms of s, and show that there are only a finite number of
points where their values are equal.

First, we show that the scalars a1 , a2 , b1 , and b2 are all
nonzero. Suppose there exists an i ∈ {1, 2} such that ai = 0.

1) If bi = 0, then ci �= 0 (otherwise the vectors a, b, and c
are all eigenvectors of Λ). Thus, (24) implies that U is
empty, which contradicts the assumption that it is infinite.

2) If bi �= 0, then (t, s) ∈ U only if bici < 0 and

s =
1
λi

ln
(

− ci

bi

)

.

Thus U is a singleton, which contradicts the assumption
that it is infinite.

Hence a1 and a2 are both nonzero. The scalars b1 and b2 are
both nonzero for similar reasons.

Second, we discard some subsets of [T3 , T4 ] where (24) can-
not hold. Let f̄0 := min{eλ1 t , eλ2 t : t ∈ [T1 , T2 ]} > 0. Define
the functions ḡ1 , ḡ2 : [T3 , T4 ] → R as

ḡi(s) :=
bieλi s + ci

ai
, i = 1, 2

and the sets S1 ,S2 ⊂ [T3 , T4 ] as

Si := {s ∈ [T3 , T4 ] : ḡi(s) ≥ f̄0}, i = 1, 2.

As ḡ1 and ḡ2 are both monotonic functions, the sets S1 and S2
are both finite intervals on R. Hence their intersection

S := S1 ∩ S2 ⊂ [T3 , T4 ]

is also a finite interval on R. Following (24), (t, s) ∈ U only if
s ∈ S, since otherwise there exits an i ∈ {1, 2} such that

bieλi s + ci

ai
= ḡi(s) < f̄0 ≤ eλi t ∀t ∈ [T1 , T2 ].

Finally, define the functions τ1 , τ2 : S → R by

τi(s) :=
1
λi

ln
(

bieλi s + ci

ai

)

, i = 1, 2.

Note that for both i ∈ {1, 2}

bieλi s + ci

ai
= ḡi(s) ≥ f̄0 > 0 ∀s ∈ S.

Hence τ1 and τ2 are both well defined and continuous on S.
Also, they are both differentiable on the interior of S, and their
derivatives are given by

τ ′
i(s) =

bieλi s

bieλi s + ci
, i = 1, 2.

Following (24), (t, s) ∈ U only if τ1(s) = τ2(s). Suppose there
are two distinct points s1 , s2 ∈ S such that τ1(s1) = τ2(s1)
and τ1(s2) = τ2(s2). By Corollary 1, there exists a point s∗ ∈
(s1 , s2) such that τ ′

1(s
∗) = τ ′

2(s
∗), that is,

b1c2eλ1 s∗
= b2c1eλ2 s∗

.

As b1 and b2 are both nonzero, and c1 and c2 are not both zero,
the previous equality holds if only if b1b2c1c2 > 0, and

s∗ =
1

λ1 − λ2
ln
(

b2c1

b1c2

)

. (25)

We have thus shown that given any two points s1 and s2 in the set
V := {s ∈ S : τ1(s) = τ2(s)} the point s∗ defined by (25) must
be between those two points. This automatically excludes the
possibility of V having three or more points, by a contradiction
argument. Consequently, there are at most two points in U ,
which contradicts the assumption that it is infinite. Therefore,
F ∩ G is finite, that is, the claim of Lemma 3 holds for the case
of two distinct real eigenvalues.

2) Case of a Complex Conjugate Pair of Eigenvalues:
Denote

a =
[

â cos α
â sin α

]

, b =
[

b̂ cos β

b̂ sinβ

]

, c =
[

ĉ cos γ
ĉ sin γ

]

with scalars â, b̂, ĉ > 0 and α, β, γ ∈ [0, 2π). From

eΛt =

[
eλt cos (θt) eλt sin (θt)

−eλt sin (θt) eλt cos (θt)

]

.

it follows that

f(t) =

[
âeλt cos (α − θt)

âeλt sin (α − θt)

]

g(t) =

[
b̂eλt cos (β − θt) + ĉ cos γ

b̂eλt sin (β − θt) + ĉ sin γ

]

.

For brevity, denote

r1(s) := b̂eλs sin (β − θs) + ĉ sin γ

r2(s) := b̂eλs cos (β − θs) + ĉ cos γ. (26)

For the set U defined by (23), (t, s) ∈ U if and only if

â2e2λt = r1(s)2 + r2(s)2

tan(α − θt) = r1(s)/r2(s). (27)
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Consider the special case that λ = 0 (namely, a conjugate pair
of purely imaginary eigenvalues). Then the first equation in (27)
becomes

â2 = b̂2 + 2b̂ĉ cos (β − γ − θs) + ĉ2 .

As â, b̂, ĉ > 0, the previous equality may hold for only a finite
number of points on the finite interval [T3 , T4 ], which contradicts
the assumption that U is infinite.

In the following, we transform (27) into two formulas for t
in terms of s (under the assumption that λ �= 0), and show that
there is only a finite number of points where their values are
equal.

First, based on the periodicity of the trigonometric functions
in (27), we divide the domains [T1 , T2 ] and [T3 , T4 ] into finitely
many intervals. Define the sequences of finite intervals (Tl)l∈Z

and (S̄l)l∈Z as

Tl :=
[
α + lπ

θ
− π

2|θ| ,
α + lπ

θ
+

π

2|θ|

)

S̄l :=
(

β + lπ

θ
,
β + lπ

θ
+

π

|θ|

)

.

Then
⋃

l∈Z

Tl = R,
⋃

l∈Z

S̄l = R\{s ∈ R : sin (β − θs) = 0}.

As [T1 , T2 ] and [T3 , T4 ] are both finite, there are only a finite
number of integers l1 and l2 such that [T1 , T2 ] ∩ Tl1 �= ∅ and
[T3 , T4 ] ∩ S̄l2 �= ∅, respectively. Moreover, there are also only a
finite number of points in {s ∈ [T3 , T4 ] : sin (β − θs) = 0}.

Second, we further divide the intervals in (S̄l)l∈Z by discard-
ing the points where r2 defined in (26) vanishes (to ensure the
continuity of the function τ2 below). As r2 is continuous and
monotonic on each S̄l , there is at most one point s′l ∈ S̄l such
that r2(s′l) = 0. If such a point exists then denote

S2l :=
(

β + lπ

θ
, s′l

)

, S2l+1 :=
(

s′l ,
β + lπ

θ
+

π

|θ|

)

otherwise let

S2l := S2l+1 := S̄l .

Then (Sl)l∈Z is also a sequence of finite intervals. Again, as
[T3 , T4 ] is finite, there are only a finite number of integers l such
that [T3 , T4 ] ∩ Sl �= ∅. Therefore, if for each pair of integers l
and m, there are only a finite number of points (t, s) ∈ Tl × Sm

such that (27) holds, then U is also finite.
Finally, fix an arbitrary pair of integers l and m, and define

the functions τ1 , τ2 : Sm → R by

τ1(s) :=
1
2λ

ln
(

r2
1 (s) + r2

2 (s)
â2

)

τ2(s) :=
1
θ

(

α + lπ − arctan
(

r1(s)
r2(s)

))

.

As r1 and r2 are both differentiable and r2 is nonzero on Sm ,
the functions τ1 and τ2 are both well defined and differentiable
on Sm . Also, as the image of the arctangent function on R is a

Fig. 7. Feedback system with quantizer.

subset of the interval (−π/2, π/2), the image of τ2 is a subset
of Tl . The derivatives of τ1 and τ2 are given by

τ ′
1(s) =

b̂2e2λs + b̂ĉeλs cos (φ(s)) + b̂ĉeλs(θ/λ) sin (φ(s))
r2
1 (s) + r2

2 (s)

τ ′
2(s) =

b̂2e2λs + b̂ĉeλs cos (φ(s)) − b̂ĉeλs(λ/θ) sin (φ(s))
r2
1 (s) + r2

2 (s)

where

φ(s) := β − γ − θs.

For all (t, s) ∈ Tl × Sm , (27) holds only if τ1(s) = τ2(s).
Suppose there are two distinct points s1 , s2 ∈ Sm such that
τ1(s1) = τ2(s1) and τ1(s2) = τ2(s2). By Corollary 1, there ex-
ists a point s∗ ∈ (s1 , s2) such that τ ′

1(s
∗) = τ ′

2(s
∗), that is,

sin (φ(s∗)) = sin (β − γ − θs∗) = 0. (28)

We have established that given any s1 , s2 in the set Vm :=
{s ∈ Sm : τ1(s) = τ2(s)} the point s∗ satisfying (28) must be
between s1 and s2 . However, (28) holds for at most one point
on Sm . Hence, there are at most two distinct points in Vm .
Consequently, there are at most two points in Tl × Sm such that
(27) holds, which contradicts the assumption that U is infinite
(as explained in the second step above). Therefore, F ∩ G is
finite, that is, the claim of Lemma 3 holds for the case of a
complex conjugate pair of eigenvalues. This completes the proof
of Lemma 3.

V. PRELIMINARIES FOR THE CASE WITH QUANTIZATION

So far, we have assumed that real-valued vectors yk can be
transmitted from the sensor to the controller. However, signals
in networked control systems are often quantized to discrete
values because of the sensor’s limited capabilities and/or finite
capacity in the communication channels. In the rest of the paper,
we extend the setup in Section II to deal with quantization.

Instead of the original feedback system in Fig. 1, consider
the system depicted in Fig. 7. The plant and controller are the
same as those in Section II, but the observed state yk ∈ Rn is
quantized before being sent to the controller. We shall consider
static quantization laws that partition the state-space Rn into a
discrete family of sets and, at the kth sampling time transmit a
symbol r(yk ) that represents the set to which yk belongs. For
simplicity of notation, we denote by Yk both the symbol and the
set corresponding to the measurement yk . In the next section, we
present results for logarithmic and uniform quantization sets.
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In the quantization case, we impose the following assumption
instead of Assumption 3.

Assumption 4: The control input is zero during [kT, kT +
Δ] for every k, i.e.,

uk = 0 ∀k ∈ Z+

and u(t) does not depend on the future measurements {Yk :
kT + Δ ≥ t}.

Remark 3: Assumption 4 simplifies computing the effect of
the input uk during the sensing period [kT, kT + Δ], while the
exact value of yk may not yet be known to the controller. This
assumption can be lifted if the quantizer knows the control law.

We now redefine the estimation set Jk in (5) to fit the quanti-
zation setup:

Jk =
{

e−Aδk ŷk : δk ∈ [0,Δ], ŷk ∈ Yk

}
. (29)

The estimation sets Ik and I−k+1 are defined as in (6) and (7),
respectively, but with Jk defined above instead of (5). Note that
the estimation set Ik is also tight in the following sense, which
is a natural extension of Definition 1.

Definition 3: An estimation set Ik ⊂ Rn of x(kT ), which is
constructed from I−0 , u(t), t ∈ [0, kT + Δ], and Y0 , Y1 , . . . , Yk ,
is said to be tight if for every xk ∈ Ik , there exist x0 ∈ I−0 ,
{δi ∈ [0,Δ]}k

i=0 , and {ŷi ∈ Yi}k
i=0 , such that

eAkT x0 +
∫ kT

0
eA(kT −τ )Bu(τ)dτ = xk

eA(iT +δi )x0 +
∫ iT +δi

0
eA(iT +δi −τ )Bu(τ)dτ = ŷi

∀i ∈ {0, 1, . . . , k}.

VI. STABILIZABILITY UNDER CLOCK OFFSETS AND

QUANTIZATION

A. Process with a Scalar-Valued State: Logarithmic
Quantizer

Consider the plant in (10). In this section, we employ the
logarithmic quantizer proposed in [23]: Given α0 > 0 and ρ ∈
(0, 1), the quantizer r is given by Yk = r(yk ), ∀k ∈ Z+ , with

r(y) =

⎧
⎪⎨

⎪⎩

(
ρi+1α0 , ρ

iα0
]

if y > 0

{0} if y = 0
[
−ρiα0 ,−ρi+1α0

)
if y < 0

(30)

where i is the integer satisfying ρi+1α0 < |y| ≤ ρiα0 . Here, the
ratio ρ expresses the coarseness of the logarithmic quantizer; the
quantization levels become fine as ρ → 1 and become coarse as
ρ → 0.

For the system given in Fig. 7 with this logarithmic quantizer,
the following theorem gives a necessary condition and a suffi-
cient condition for stability, expressed in terms of the parameter
ρ that defines the coarseness of the quantizer.

Theorem 3: Let Assumptions 1, 2, and 4 hold. Consider the
feedback system in Fig. 7 with the plant (10) and the logarith-
mic quantizer (30). If the system is stabilizable in the sense of

Fig. 8. Bounds on coarseness ρ of quantization for stabilizability versus
the maximum clock offsets Δ: The necessary condition in (31) (dashed),
the sufficient condition in (32) (solid), and the upper bound on the clock
offset for stabilizability in (11) (dash–dot).

Definition 2, then

ρ ∈

⎧
⎨

⎩

(0, 1) if eλT ≤ 2
(
max

{
0, eλΔ − 1

eλT /2−1

}
, 1
)

if eλT > 2.
(31)

On the other hand, the feedback system is stabilizable if

ρ ∈
(

max
{

0, eλΔ
(

1 − 1
eλT /2

)}

, 1
)

. (32)

We illustrate the bounds on the coarseness ρ given in (31) and
(32) through an example.

Example 3: Consider the plant (10) with λ = 1.0 and fix
the nominal sampling interval as T = 1.5. In Fig. 8, we plot
the necessary lower bound on ρ for stabilizability given by
(31) and the sufficient bound given by (32). The dash-dot line
represents the maximum clock offset tolerable for stability Δ̄ ≈
0.59 without quantization given by Theorem 1. We see that, as
the clock offset Δ approaches Δ̄, the ratio ρ of the endpoints of
a quantization cell goes to 1 and hence, very fine quantization
is needed for stabilizability.

The approach used to prove Theorem 3 also relies on deter-
mining the length lk of the estimation set Ik and construct upper
and lower worst-case bounds for this length.

Lemma 4: Consider the feedback system in Fig. 7 with the
plant (10) and a logarithmic quantizer (30). Given an estimation
set Ik−1 of width lk−1 , k ≥ 1, the worst-case width lk of Ik

satisfies the following upper and lower bounds:

1 − ρe−λΔ

1 + (1 − ρ)e−λΔ

eλT

2
lk−1 ≤ min

u(t),
t∈((k−1)T+Δ ,kT )

max
xk ∈I−

k ,δk ∈[0,Δ]
lk

≤
(
1 − ρe−λΔ) eλT

2
lk−1 (33)

where the second inequality holds when the control input places
I−k symmetrically about the origin.

Proof: Let p and q denote the lower bound and the up-
per bound for I−k , respectively, i.e., p := infξ∈I−

k
ξ and q :=
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supξ∈I−
k

ξ. Assume that

|q| ≥ |p| (34)

that is, the center of I−k is nonnegative. If this is not the case, the
analysis below can be adapted by flipping signs and replacing q
with p.

As we discussed in the proof of Lemma 1, the min–max of lk
in (33) can be computed by finding the largest lk , as we ranging
over all possible quantized outputs Yk . To obtain an explicit
formula of maxYk

lk , we consider the following two cases.
1) p ≤ 0 < q: From (4), the set of possible Yk compatible

with xk ∈ I−k and δk ∈ [0,Δ] is given by Yk ∈ Y− ∪ {0} ∪ Y+ ,
where Y− and Y+ are defined as

Y− :=

⎧
⎨

⎩

[
−ρiα0 ,−ρi+1α0

)
: i ≥

⎢
⎢
⎢
⎣

ln eλΔ |p |
α0

ln ρ

⎥
⎥
⎥
⎦ , i ∈ Z

⎫
⎬

⎭

Y+ :=

{
(
ρi+1α0 , ρ

iα0
]

: i ≥
⌊

ln eλΔ q
α0

ln ρ

⌋

, i ∈ Z

}

.

We note that the interval (ρi+1α0 , ρ
iα0 ], i = �ln y

α0
/ ln ρ�, is

the quantization cell that contains y > 0, i.e., ρi+1α0 < y ≤
ρiα0 .

In what follows, we evaluate maxYk
lk on each subset {0},

Y+ , and Y− to describe maxYk ∈Y−∪{0}∪Y+ lk . If Yk = {0}, we
have Ik = {0} and hence lk = 0. Next, suppose that Yk ∈ Y+ .
Then, from (29), the estimation set Jk is given by

Jk =
(
e−λΔρi+1α0 , ρ

iα0
]
, i ≥

⌊
ln eλΔ q

α0

ln ρ

⌋

, i ∈ Z

where, i represents the index of a quantization cell. Taking the
intersection of Jk and I−k , which is bounded by q from above,
we have

lk =

{
q − e−λΔρi+1α0 if ρiα0 ≥ q
(
1 − e−λΔρ

)
ρiα0 if ρiα0 < q.

Let us consider the maximum of lk over i. If ρiα0 ≥ q, i.e., i ≤
ln q

α0
/ ln ρ, then lk is increasing with i, and hence the maximum

in this case occurs when i = �ln q
α0

/ ln ρ�. If ρiα0 < q, or i >
ln q

α0
/ ln ρ, since lk is decreasing for this case, the maximum

occurs when i = �ln q
α0

/ ln ρ� + 1. Therefore, we have that

max
Yk ∈Y+

lk = max
{
q − e−λΔq,

(
1 − e−λΔρ

)
q
}

(35)

where q := ρ�ln
q

α 0
/ ln ρ�+1α0 , which is the infimum of the quan-

tization cell containing the upper bound q of I−k . For the case
Yk ∈ Y−, following the same discussion for Yk ∈ Y+ , we ob-
tain

max
Yk ∈Y−

lk = max
{
|p| − e−λΔp,

(
1 − e−λΔρ

)
p
}

where p := ρ�ln
|p |
α 0

/ ln ρ�+1α0 . In view of (34), we have that the
maximum of lk over Yk ∈ Y− ∪ {0} ∪ Y+ is equal to the right-
hand side of (35).

2) 0 < p < q: The estimation sets Jk constructed from Yk

which are compatible with 2) are given by

Jk =
(
e−λΔρi+1α0 , ρ

iα0
]
,

⌊
ln eλΔ q

α0

ln ρ

⌋

≤ i ≤
⌊

ln p
α0

ln ρ

⌋

, i ∈ Z.

The maximum of lk over Yk can be obtained by following
the discussion above for the case Yk ∈ Y+ in 1). The only
difference is that, in the current case, the lower bound p of I−k
may be greater than that of Jk . This reasoning eventually leads
to

max
Yk

lk =

{
max

{
q − e−λΔq,

(
1 − e−λΔρ

)
q
}

if p ≤ e−λΔq

q − p if p > e−λΔq
(36)

where q := ρ�ln
q

α 0
/ ln ρ�+1α0 , which is the same in (35). When

I−k lies far from the origin, and thus, p > e−λΔq, then there
exists a case that the estimation set Jk becomes a superset of I−k
for some Yk .

As the second step of the proof, we evaluate the mini-
mum of maxYk

lk obtained in (35) and (36) over the input
u(t). Note that u(t) changes the position of I−k with respect
to the origin. We first establish that minu(t) s.t. 2) maxYk

lk ≥
minu(t) s.t. 1) maxYk

lk as follows. Let us compare (36) with (35).
If p ≤ e−λΔq, then maxYk

lk takes the same form for both cases
1) and 2), and that is increasing with q. Since q in the case 2)
cannot be smaller than that in 1), the claim is true. Otherwise, if
p < e−λΔq, the right-hand side of (36) equals q − p = eλT lk−1 .
This is greater than minu(t) s.t. 1) maxYk

lk since it is possible
to make minu(t) s.t. 1) maxYk

lk less than or equal to eλT lk−1/2
with the input such that p = −q = eλT lk−1/2.

From the above discussion, we have that it suffices to consider
the case 1) for the evaluation of minu(t) maxxk ,δk

lk in (33). A
simple calculation shows that the worst case length maxYk

lk
in (35) is bounded from below and above by the following
functions, both linear to q:

1 − ρe−λΔ

1 + (1 − ρ)e−λΔ q ≤ max
{
q − e−λΔq,

(
1 − e−λΔρ

)
q
}

≤
(
1 − ρe−λΔ) q. (37)

Since both the lower bound and the upper bound in the above are
increasing with q, the bounds are minimized when q = −p =
eλT lk−1/2, which means that I−k is symmetric about the origin.
Substituting this into (37) leads to (33). �

Proof of Theorem 3: (Sufficiency) If ρ satisfies (32), then
there exists a logarithmic quantizer resulting in (1 − ρe−λΔ)
eλT /2 < 1. Therefore, from Lemma 4, with the control input
which places I−k symmetrically about the origin, we can make
Ik narrower than the previous estimation set for any x(0) ∈ I−0
and δk ∈ [0,Δ]. Thus, repeating this procedure for each sam-
pling period, we can achieve lk → 0 as k → ∞, which implies
the stability of the feedback system.

(Necessity) When eλT ≤ 2, every ρ ∈ (0, 1) satisfies the suf-
ficient condition (32) and hence the system is stabilizable. Con-
sider the case of eλT > 2. Since Ik is a tight estimation set, when
the system is stabilizable, the length lk must converge to 0 for
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every x(0) and {δk}∞k=0 . From Lemma 4, it is required for the
convergence of lk that

1 − ρe−λΔ

1 + (1 − ρ)e−λΔ

eλT

2
< 1.

The above inequality is equivalent to (31) when eλT > 2. �

B. Process with a Scalar-Valued State: Uniform
Quantizer

In this section, we consider the infinite- and finite-range uni-
form quantizers that divide the state space uniformly. Given
the width w ∈ (0,∞) of the quantization cells, the infinite-rage
uniform quantizer is defined by

r(y) = [iw, (i + 1)w ) (38)

where i is the integer such that iw ≤ y < (i + 1)w.
Theorem 4: Let Assumptions 1, 2, and 4 hold. Consider the

feedback system in Fig. 7 with the plant (10) and the infinite-
range uniform quantizer (38). When 0 ≤ Δ < Δ̄, with Δ̄ given
by (11), there exists a feedback controller such that, along solu-
tions to the closed-loop, we have

lim sup
t→∞

|x(t)| ≤
{

0 if eλT < 2
1
2

eλT w
1−(1−e−λΔ )eλT /2 if eλT ≥ 2

(39)

for every initial condition x(0) ∈ R and sampling offsets {δk ∈
[0,Δ]}∞k=0 .

Furthermore, if

eλT ≥ 2
1 − e−λΔ (1 − e−λΔ)

(40)

then for any causal control law satisfying the setup in Section
V, there exist an initial condition x(0) ∈ R and a sequence
{δk ∈ [0,Δ]}∞k=0 such that

lim sup
t→∞

|x(t)| ≥ 1
2

eλ(T −Δ)w

1 − (1 − e−λΔ) eλT /2
. (41)

Remark 4: We can see from (39) that for any Δ ∈ [0, Δ̄),
the uniform quantizer leads to a bounded solution, regardless of
the width w of the quantizations, but with the caveat that the
upper bound in the lower branch of (39) increases as both w
and Δ increase. We also see from (39) that asymptotic stability
is possible provided that eλT < 2, but for larger values of eλT

the state x(t) may not converge to zero. In particular, when eλT

exceeds the bound in (40), we can conclude from (41) that x(t)
will surely not converge to zero for some initial conditions and
δk sequences.

Before we turn to the proof of Theorem 4, we study a more
realistic scenario in which the quantizer’s input range is a finite
interval that does not cover the entire state space R. Let us
consider a finite-range quantizer that partitions (−σ, σ), σ > 0,
into an even number N cells of the same width w = 2σ/N and

Fig. 9. Base-2 logarithms of the bounds of the number N of quantiza-
tion cells versus the maximum clock offsets Δ: The sufficient condition
in (43) (solid), the necessary condition in (44) (dashed), and the upper
bound on the clock offset for stabilizability in (11) (dash–dot).

is defined by Yk = r(yk ), ∀k ∈ Z+ , with

r(y) =

⎧
⎪⎨

⎪⎩

[
� y

w �w, � y
w + 1�w

)
if −σ + w ≤ y < σ

(−σ,−σ + w) if −σ < y < −σ + w

∅ else.
(42)

With the use of the finite-range quantizer (42), global sta-
bilizability (as defined in Section IV) is not possible, so the
control objective must be relaxed to containability, which has
been studied in [36].

Definition 4: The feedback system in Fig. 7 with the N -level
quantizer (42) is containable if for any sphere S centered at the
origin, there exist an open neighborhood M of the origin and a
feedback control law such that if x(0) ∈ M then x(t) ∈ S for
all t ≥ 0.

Theorem 5: Let Assumptions 1, 2, and 4 hold. Consider the
feedback system in Fig. 7 with the plant (10) and the uniform
quantizer (42). The feedback system is containable if eλT < 2
or

0 ≤ Δ < Δ̄, N >
eλT

1 − (1 − e−λΔ)eλT /2
(43)

where Δ̄ is given in (11).
Conversely, if the systems is containable and (40) holds, then

it follows that

0 ≤ Δ < Δ̄, N >
eλ(T −Δ)

1 − (1 − e−λΔ)eλT /2
. (44)

The following example illustrates this result.
Example 4: Consider the plant (10) with λ = 1.0 and fix

the nominal sampling interval as T = 1.5. Fig. 9 shows the
sufficient bound on N in (43) and the necessary bound in (44) for
containability. The vertical axis is log2 N , which corresponds
to the number of bits needed to send one of N symbols. From
the figure, we see that for a clock offset larger than Δ̄ (i.e., on
the right side of the dash–dot line), the bounds on N goes to
infinity and the system is not containable.
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Theorems 4 and 5 can be derived using the following lemma,
which is the analogous of Lemma 4 in the logarithmic case. See
the Appendix for the proofs of Lemma 5 and Theorem 4.

Lemma 5: Consider the feedback system in Fig. 7 with the
scalar plant (10) and a uniform quantizer (42). For k ∈ Z+ ,
suppose that the estimation set I−k satisfies

{
eλtxk : xk ∈ I−k , t ∈ [0,Δ]

}
⊂ (−σ, σ) (45)

i.e., I−k is contained in the quantizer’s input during the kth
sampling, and let l−k be the length of I−k . Then, the length lk of
Ik satisfies

min
u(t),

t∈((k−1)T +Δ ,kT )

max
xk ∈I−

k ,δk ∈[0,Δ]
lk ≤ κe−λT l−k + β (46)

where

κ :=
(
1 − e−λΔ) eλT

2
, β := e−λΔw. (47)

Furthermore, it holds that

min
u(t),

t∈((k−1)T +Δ ,kT )

max
xk ∈I−

k ,δk ∈[0,Δ]
lk

≥
{

l−k
2 if l−k < 2w

κe−λT l−k + e−λΔβ else
(48)

where the equality holds if l−k < 2w. In (46) and (48), the mini-
mum occurs when I−k is placed symmetrically about the origin.

Proof of Theorem 5: (Sufficiency) We fix a specific value
for σ > 0 and show that there exists an interval I−0 =
[−l−0 /2, l−0 /2], l−0 > 0, such that x(t) can be contained in
(−σ, σ) for all t ≥ 0. First, suppose that (43) holds. Then, the
constant κ defined by (47) satisfies κ < 1 and there exists a
constant l−0 such that w = 2σ/N and

σ >
eλ(T +Δ)β

2(1 − κ)
>

eλΔ

2
l−0 . (49)

With such a quantizer and I−0 , we have that |x(t)| < eλ(T +Δ)

β/{2(1 − κ)} for t ∈ [0,Δ]. Furthermore, we show below that
the state can be bounded by this upper bound for all t > Δ.

Notice that I−0 = [−l−0 /2, l−0 /2] satisfies (45) from (49) and
is symmetric about the origin. Thus, from (46) and (49), we
have that l0 < β/(1 − κ). Therefore, in light of (46), κ < 1, and
l−k = eλT lk−1 , by a control input which places I−k symmetrically
about the origin, we can make Ik so that lk < β/(1 − κ) and

|x(kT + Δ)| ≤ eλ(T +Δ) lk−1

2
<

eλ(T +Δ)β

2(1 − κ)
∀k ∈ Z+ (50)

where l−1 := e−λT l−0 .
Moreover, we can bound |x(t)| by the far right-hand side

of (50) also for t ∈ (kT + Δ, (k + 1)T + Δ) as follows: From
(50), there exists t1 ∈ (kT + Δ, (k + 1)T ) such that |x(t1)| <
eλ(T +Δ)β/{2(1 − κ)}. Pick any t2 ∈ (t1 , (k + 1)T ) and con-
sider the control input which takes the constant during [t1 , t2 ] to
bring the center of the set {eλ(t1 −kT )xk : xk ∈ Ik} to the origin
and zero for the rest. Then, since |x((k + 1)T + Δ)| satisfies

the bound in (50), |x(t)| is also bounded by the same upper
bound for t > Δ.

On the other hand, when eλT < 2 is satisfied, there exists I−0
such that l−0 < 2w. Then, from (48), l0 = l−0 /2, which results in
l−1 = eλT l0 < l−0 by the above control input, and this concludes
containability for this case as well.

(Necessity) When the system is containable, there exists a
control input so that the quantizer does not saturate, i.e., all
xk ∈ Ik are bounded as |xk | < σ for all time k. Otherwise, we
lose track of some states compatible with the past measurements.
Thus, when (40) holds, the right-hand side of (41) in Theorem 4
must be smaller than 2σ from containability. This fact and N =
2σ/w lead us to (44). �

C. Process with a Vector-Valued State

For a specific class of general order systems, we can apply
some of the results presented above for scalar systems. Consider
the feedback system in Fig. 7 with a plant (1) for which the
unstable part of A is real diagonalizable, i.e., A is similar to the
matrix

[
Au 0
0 As

]

where Au := diag (λ1 , . . . , λnu
), λi > 0, i = 1, . . . , nu , and

As ∈ R(n−nu )×(n−nu ) has no unstable eigenvalue. The sta-
bilization of this system boils down to stabilizing the first-
order systems ξ̇i(t) = λiξi(t) + νi(t), i = 1, . . . , nu , based on
the quantized values of ξi(kT + δk ). If all the first-order sys-
tems are stabilizable with logarithmic quantizers (or containable
with uniform quantizers), then the feedback system is stabiliz-
able in the sense of Definition 2 (containable in the sense of
Definition 4).

However, the results in Theorem 2 indicate that such condi-
tions induced by the scalar case results may be conservative. The
main difficulty in extending Theorem 2 to the quantization case
lies in the evaluation of the volume of the estimation set Ik . Un-
like in the no-quantization case, with quantization the observed
state comes as a set in the state space and the set Jk becomes
a band of exponential functions. Then, Ik is the intersection of
exponential bands and obtaining a lower or upper bound of its
volume analytically remains an open problem.

VII. CONCLUSION

We studied the stability of a linear system using an asyn-
chronous sensor and controller connected with a communica-
tion channel. We first considered the quantization-free case and
derived conditions on the clock offset for stabilizability. The
condition for processes with a scalar-valued state gives a tight
limitation on the offset, which depends on the level of instabil-
ity of the plant and the sampling period. For processes with a
vector-valued state, we showed that if the plant has at least two
distinct poles, then the system is always stabilizable in finite
time. We then study for the quantization case. For processes
with a scalar-valued state with a logarithmic or uniform quan-
tizer, we derived a necessary condition and a sufficient condition
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for stabilizability or containability, in terms of the coarseness of
the quantizers.

Although a stabilizing algorithm has been given in the proofs,
this algorithm is generally not suitable for practical controllers.
The construction of practical control algorithms remains an im-
portant topic for future work. Other possible extensions include
the case with disturbances, the output feedback case, and con-
sidering long delays which do not satisfy Assumption 2.

APPENDIX

We first present the proof of Lemma 5. Then, Theorem 4 is
proved using Lemma 5.

Proof of Lemma 5: We follow the approach in the proof of
Lemma 4 and evaluate the maximum of lk over all possible
Yk . Let p and q denote the lower bound and the upper bound
for I−k , respectively, i.e., p := infξ∈I−

k
ξ and q := supξ∈I−

k
ξ, and

assume that |q| ≥ |p|.
The proof consists of three steps. First, we obtain an ex-

pression for maxYk
lk in terms of p and q. To do so, we con-

sider the two cases 1) p < 0 < q and 2) 0 ≤ p < q. We then es-
tablish that minu(t) s.t. 1) maxYk

lk ≤ minu(t) s.t. 2) maxYk
lk . Fi-

nally, the inequalities (46) and (48) are proved using the bounds
on minu(t) maxYk

lk obtained in the previous step.
Step 1: Consider the following two cases.
1) p < 0 < q: If in addition q < w, then lk = q or lk = |p|.

Thus, from the assumption |q| ≥ |p|, we have

max
Yk

lk = q. (51)

Otherwise, i.e., if q ≥ w, we show that

max
Yk

lk = max
{
q − e−λΔq,

(
1 − e−λΔ) q + e−λΔw

}
(52)

where q is the lower bound of the cell containing q, which is
given by q := �q/w�w. In the case of 1), the set of all possible
Yk is given by Y+ ∪ Y−, where

Y+ :=
{

[iw, (i + 1)w ) : 0 ≤ i ≤
⌊

eλΔq

w

⌋

, i ∈ Z

}

Y− :=
{

[iw, (i + 1)w ) :
⌊

eλΔp

w

⌋

≤ i ≤ −1, i ∈ Z

}

.

When Yk ∈ Y+ , it follows that

lk = min {q, (i + 1)w} − e−λΔ iw, 0 ≤ i ≤
⌊

eλΔq

w

⌋

, i ∈ Z.

Regarding the above lk , for Yk such that q < (i + 1)w, or equiv-
alently i ≥ �q/w�, we have lk = q − e−λΔ iw. Since lk is de-
creasing with i, it takes the maximum q − e−λΔq when i =
�q/w�; otherwise, i.e., if i ≤ �q/w� − 1, then, lk = (i + 1)w −
e−λΔ iw, and hence its maximum is (1 − e−λΔ)q + e−λΔw.
Therefore, (52) holds for Yk ∈ Y+ .

Following the same discussion, for Yk ∈ Y−, we have that

max
Yk

lk = max
{
|p| − e−λΔ

⌊
|p|
w

⌋

w

(
1 − e−λΔ)

⌊
|p|
w

⌋

w + e−λΔw
}

.

Noticing that |q| ≥ |p|, this is smaller than or equal to the right-
hand side of (52). Thus, (52) expresses the maximum overY+ ∪
Y−.

From (51) and (52), maxYk
lk with I−k satisfying 1) is given

as

max
Yk

lk =

{
q − e−λΔq if q = 0 or q − q ≥ e−λΔw
(
1 − e−λΔ

)
q + e−λΔw else.

(53)
2) 0 ≤ p < q: In this case, the range of possible Yk is given

by

Yk ∈
{

[iw, (i + 1)w ) :
⌊ p

w

⌋
≤ i ≤

⌊
eλΔq

w

⌋

, i ∈ Z

}

.

Hence, it follows that

lk = min {q, (i + 1)w} − max
{
p, e−λΔ iw

}

⌊ p

w

⌋
≤ i ≤

⌊
eλΔq

w

⌋

, i ∈ Z.

Following a similar analysis to 1), we have that maxYk
lk with

I−k satisfying 2) is given by

max
Yk

lk = max
{
q − max

{
p, e−λΔq

}

q − max
{
p, e−λΔ (

q − w
)} }

. (54)

Step 2: In this step, we show that minu(t) s.t. 1) maxYk
lk ≤

minu(t) s.t. 2) maxYk
lk . From (53), the minimum of minu(t) s.t. 1)

maxYk
lk can be computed as

min
u(t) s.t. (i)

max
Yk

lk =

⎧
⎪⎪⎨

⎪⎪⎩

L if L < w

max
{
L − e−λΔ� L

w �w,
(
1 − e−λΔ

)
� L

w �w + e−λΔw
}

else
(55)

where L := l−k /2. Meanwhile, it is difficult to obtain
minu(t) s.t. 2) maxYk

lk directly from (54). Thus, in what fol-
lows, we prove that for any I−k satisfying 2), maxYk

lk becomes
greater than (55).

Suppose that I−k corresponds to the case 2) above and consider
two cases (a) L < w and (b) L ≥ w.

(a) L < w: We prove that, for this case, it holds that
maxYk

lk ≥ L, while minu(t) s.t. (i) maxYk
lk = L from (55). To

do so, three cases (a-1)–(a-3) are examined depending on the
size of I−k :

(a-1) p ≥ q: In this case, I−k is contained in the quantization
cell

[
q, q + w

)
. Thus, it is true that maxYk

lk = 2L ≥ L.
(a-2) q − w ≤ p < q: From (54), we have that

max
Yk

lk = max
{
q − max

{
p, e−λΔq

}
, q − p

}

≥ max
{
q − q, q − p

}
(56)

where the inequality follows since q > p by (a-2) and q ≥
e−λΔq. The far right-hand side of (56) is greater than or equal
to L since q − q < L implies that q − p = 2L − (q − q) > L.

(a-3) p < q − w: From the condition, the quantization cell[
q − w, q

)
becomes a subset of I−k . Such Yk results in Ik such

that lk ≥ w, which is greater than L by the condition (a).
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(b) L ≥ w: To obtain a simpler expression to (54), consider
two cases (b-1) and (b-2):

(b-1) p ≤ e−λΔ(q − w): From (54), it follows that

max
Yk

lk = max
{
q − e−λΔq, (1 − e−λΔ)q + e−λΔw

}
.

Noticing that q > 0, we have that the above expression is
the same as the right-hand side of (53). Since q and q cannot
be smaller than or equal to those in the case 1), it holds that
maxYk

lk > minu(t) s.t. (i) maxYk
lk .

(b-2) p > e−λΔ(q − w): In this case, we have

max
Yk

lk = max
{
q − e−λΔq, q − p

}

≥ q − p = 2L −
(
q − q

)

> 2L − w ≥ L.

Here, the second inequality holds by the fact that q − q < w and
the third inequality is obtained by the condition (b). On the other
hand, from (55), it follows that minu(t) s.t. (i) maxYk

lk < L and
thus maxYk

lk > minu(t) s.t. (i) maxYk
lk for this case as well.

Step 3: From Step 2, we have that minu(t) maxYk
lk equals

minu(t) s.t. 1) maxYk
lk in (55) and the minimum occurs when

q = −p = L. With κ and β in (47), the right-hand side of (55)
is bounded from above as

min
u(t),

t∈((k−1)T +Δ ,kT )

max
Yk

lk ≤ κe−λT l−k + β

which concludes (46). Moreover, since (55) is bounded from
below as

min
u(t),

t∈((k−1)T +Δ ,kT )

max
Yk

lk ≥
{

l−k
2 if l−k < 2w

κe−λT l−k + e−λΔβ else

we have (48). �
Now we are ready to prove Theorem 4.
Proof of Theorem 4 (Sufficiency) In the setup of Theorem 4,

we employ the infinite-range uniform quantizer (38). Thus, (45)
in Lemma 5 follows for all k. Since it follows that κ < 1 by
Δ < Δ̄ and from (46), we can make Ik so that for any x(0) ∈ I−0
and {δk ∈ [0,Δ]}∞k=0

lim sup
k→∞

lk ≤ β

1 − κ

by placing I−k symmetrically about the origin. Thus, using the
control input stated in the proof of Theorem 5, we have

lim sup
k→∞

|x(t)| ≤ eλ(T +Δ)

2
β

1 − κ

which establishes the lower branch of (39). Furthermore, if
eλT < 2, then it follows that β/(1 − κ) < 2e−λT w. Hence, there
exists k′ ∈ Z+ such that lk ′ < 2e−λT w. By applying the above
stated input, we obtain from (48) that lk ′+1 = eλT lk ′/2, which
implies limk→∞ lk = 0 and thus we have (39).

(Necessity) If (40) holds, then e−λΔβ/(1 − κ) ≥ 2e−λT w.
Thus, by (48), there exists a possible path of the state resulting

in

lim sup
k→∞

lk ≥ e−λΔβ

1 − κ
.

The inequality (41) follows from this. �
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