
Annual Reviews in Control 51 (2021) 460–476

A
1

F
m
J
a

b

A

K
E
S
E

1

f
2
s
a
M
m
n
m
c
m
s
S
d

u
b
m
a
i
m
o

(

h
R

Contents lists available at ScienceDirect

Annual Reviews in Control

journal homepage: www.elsevier.com/locate/arcontrol

orecasting COVID-19 cases based on a parameter-varying stochastic SIR
odel

oão P. Hespanha a,∗, Raphael Chinchilla a, Ramon R. Costa b, Murat K. Erdal a, Guosong Yang a

University of California, Santa Barbara, USA
Federal University of Rio de Janeiro, Brazil

R T I C L E I N F O

eywords:
pidemic models
ystem identification
stimation

A B S T R A C T

We address the prediction of the number of new cases and deaths for the coronavirus disease 2019 (COVID-19)
over a future horizon from historical data (forecasting). We use a model-based approach based on a stochastic
Susceptible–Infections–Removed (SIR) model with time-varying parameters, which captures the evolution of
the disease dynamics in response to changes in social behavior, non-pharmaceutical interventions, and testing
rates. We show that, in the presence of asymptomatic cases, such model includes internal parameters and states
that cannot be uniquely identified solely on the basis of measurements of new cases and deaths, but this does
not preclude the construction of reliable forecasts for future values of these measurements. Such forecasts and
associated confidence intervals can be computed using an iterative algorithm based on nonlinear optimization
solvers, without the need for Monte Carlo sampling. Our results have been validated on an extensive COVID-19
dataset covering the period from March through December 2020 on 144 regions around the globe.
. Introduction

The recent global epidemics of SARS first reported in 2003, Swine
lu in 2009, MERS in 2012, Western African Ebola in 2013, Zika in
015, and COVID-19 in 2019, identified building epidemic models
pecifically aimed at forecasting the propagation of contagious diseases
s a key need to guide epidemic response (Morgan, 2019; Shearer,
oss, McVernon, Ross, & McCaw, 2020). Motivated by this need, the
ain goal of this paper is to compute forecasts for the number of
ew cases and deaths due to the COVID-19 outbreak to aid decision
akers in provisioning healthcare resources or imposing nonpharma-

eutical interventions. In this context, forecasts must reliably provide
easures of confidence to enable decision makers to plan for worst-case

cenarios. We construct such forecasts using a time-varying stochastic
usceptible–Infected–Removed (SIR) epidemic model, that is fitted to
aily measurements of new cases and deaths.

SIR epidemic models are based on the assumption that each individ-
al of a population is in one of three basic states: susceptible to infection,
ut not yet infected by the virus; infective and thus contagious; and re-
oved from the infective state either because the individual developed
ntibodies and is no longer susceptible to the infection or because the
ndividual passed away. In this paper, we consider compartmental SIR
odels that are focused on counting the number of individuals in each

f the states (also known as compartments). The estimation of the state
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and parameters of an SIR models is typically based on a measurement
model that maps the model’s state to time series of measurements that
typically include daily counts of newly discovered infected patients and
deaths.

The SIR dynamics and measurements depend on a number of key
parameters that include the infection rate that can be interpreted as
the probability that a susceptible individual will become infected due
to interactions with infected individuals; the removal rate that can
be regarded as the probability that an individual leaves the infective
state; the deaths reporting rate that can be regarded as the probability
that a new death is reported; and the new-cases reporting rate that
can be regarded as the probability that a new infection is reported.
These parameters are strongly influenced by biological properties of
the pathogen that causes the disease, such as its ability to travel from
individual to individual, the body’s natural ability to fight it, and
whether or not the disease exhibits noticeable symptoms when an
individual is infected. However, all these parameters are also strongly
influenced by external sources, which from the perspective of an SIR
model, often dominate in determining their values:

1. The infection rate is greatly modulated by the degree to which
the population is engaging in social distancing, which in turn
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depends on media coverage of the epidemic and nonpharmaceu-
tical interventions.

2. The removal rate expresses the rate by which patients leave the
state in which they can pass the disease to susceptible patients,
which may be quite different from the rate at which they get
cured (or die). This rate is thus strongly effected by social
behavior and policies regarding quarantine, contact tracing and
testing, since a patient can stop infecting others much earlier
than cure/death.

3. In the absence of testing of asymptomatic individuals, the report-
ing rate is essentially the fraction of symptomatic patients; oth-
erwise it will depend strongly on the policies in effect regarding
the testing of asymptomatic individuals.

The strong dependence of the SIR parameters on social factors prevents
extrapolating their values across time and space: one cannot estimate
the value of a parameter in one region/time and expect it to remain the
same in a different region or even in the same region at a later time.
These observations motivate two key choices behind this work: All SIR
parameters need to be learned from data collected on a relatively ho-
mogeneous region of space and the parameter values must be allowed
to drift over time.

Motivated by the observations above, we introduce in Section 2
a stochastic SIR model with three sources of stochasticity: First, we
introduce a stochastic component to the number of individuals that
transition between states; second, we assume that daily measurements
for the number of new cases and deaths are corrupted by (stochastic)
noise; and finally, we take the key model parameters as random walks
that drift over time. The variances associated with all these stochas-
tic components need to be learned from data and, for the reasons
outlined above, we do not extrapolate their values across different
countries/regions.

From a methodological perspective, we regard forecasting as com-
puting the a posteriori distribution of the random variables that we
want to estimate, and subsequently extracting from those distributions
point estimates and associated confidence intervals. The a posteriori
distributions depend on unknown parameters that are estimated us-
ing maximum likelihood. The key challenge of this approach is that,
because the SIR model is nonlinear, it is not possible to compute in
closed form the likelihood function and the corresponding a posteriori
distributions for the variables that we want to forecast. We overcome
this by essentially using Laplace’s method to approximate the integral
that appears in the formula of the likelihood function. We show in
Section 3 that this approach enables the computation of the maximum
likelihood values for the unknown parameters and the a posteriori point
estimates and associated error covariances through a single determin-
istic optimization that can be solved numerically. For large datasets
this optimization may be computationally difficult, so we propose an
iterative algorithm that alternates between two smaller optimizations
for which the computation required by a 2nd order numerical solver
scales linearly with the length of the dataset and the forecasting hori-
zon. This approach is quite general and can be used for much more
general estimation/forecasting problems.

Our modeling and forecasting approaches were validated on an
extensive collection of COVID-19 datasets. For 144 regions around the
world, we computed weekly 7, 14, and 21 days-ahead forecasts from
March to December of 2020 for the number of new cases and deaths due
to COVID-19. These forecasts and all the associated initial conditions
and parameter estimates were computed solely using past data and then
compared with the actual (future) data. We started to produce forecasts
with as little as 21 days of data, but it generally took 4–5 weeks of data
to start getting confidence intervals that are somewhat tight.

We show formally in Section 2.3 and observe numerically through
the results in Section 4, that an SIR model that includes an unknown
reporting rate is unidentifiable, in the sense that multiple sets of param-
eters can explain the same observed data with equal likelihood (in the
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sense of maximum likelihood). This means that there is a fundamental
ambiguity in estimating SIR model parameters from measurements
of new cases and deaths; an observation that is often ignored but
had been made in prior work (Comunian, Gaburro, & Giudici, 2020).
However, this ambiguity does not prevent the computation of reliable
forecasts for the daily number of news cases and deaths. This is because
the ambiguity exists in parameter space but not on the space of the
variables that we are trying to forecast. In essence, while multiple sets
of parameters may have the same likelihood, they result in consistent
forecasts.

To study the importance of parameter drift, we compare our pro-
posed stochastic SIR model with a hierarchy of simpler models for
which we take the infection, new-cases and/or deaths reporting rates to
be constant, rather than time-varying; and also consider a more com-
plex model with a time-varying removal rate. Across a large number
of countries/regions, we conclude that taking all of these parameters,
or even just the infection rate, to be constant leads to poor results;
either resulting in gross violations of the confidence intervals or to
overly wide confidence intervals for the forecasts. This is especially
noticeable (and not surprising) in regions that show multiple waves
of infection, which could never be explained by a constant parameter
SIR model. The numerical results also show that, in general, taking
all parameters to be time varying does not result in forecasts that are
significantly better than those obtained by assuming that the death
rate is constant. In fact, for most countries/regions assuming constant
removal and death rates result in more accurate forecast.

Related work

The basic SIR epidemic model with the number of new cases pro-
portional to the product of the numbers of susceptible and infected
individuals can be traced as far back as the work of Hamer (1906).
Since then, SIR models have evolved in multiple directions, including
incorporating stochastic effects (Andersson & Britton, 2000; Ball &
Neal, 2002; Beretta, Capasso, & Rinaldi, 1988; Beretta, Kolmanovskii,
& Shaikhet, 1998; Beretta & Takeuchi, 1995; Ji & Jiang, 2014; King,
Domenech de Cellès, Magpantay, & Rohani, 2015; Tornatore, Buccel-
lato, & Vetro, 2005), the addition of new compartments corresponding
to different states of the disease (Capasso, 2008; Efimov & Ushirobira,
2020; Giordano et al., 2020; IHME COVID-19, 2020; Keeling & Rohani,
2008; Köhler et al., 2020; Peng, Yang, Zhang, Zhuge, & Hong, 2020;
Xia, Zhang, Xue, Sun, & Jin, 2015), and considering a network of
interacting populations (Della Rossa et al., 2020; Mei, Mohagheghi,
Zampieri, & Bullo, 2017; y Piontti, Perra, Rossi, Samay, & Vespignani,
2019; Stolerman, Coombs, & Boatto, 2015; Youssef & Scoglio, 2011).
The reader is referred to (Hethcote, 2000) for an historical perspective
on deterministic SIR-like epidemic models and their analysis and to the
monograph (Brauer, Castillo-Chavez, & Feng, 2019) for the application
of such models to several diseases.

A common feature to many recent models is the addition of states to
address the existence of individuals that are infected and can transmit
the disease, but are asymptomatic and thus are not accounted for
as infected in official reports (Capasso, 2008; Giordano et al., 2020;
IHME COVID-19, 2020; Köhler et al., 2020; Li et al., 2020; Xia et al.,
2015; Zou et al., 2020). The addition of states has also been used to
account for individuals under quarantine (Li et al., 2020; Peng et al.,
2020), infected but not yet infective (Efimov & Ushirobira, 2020; IHME
COVID-19, 2020; Köhler et al., 2020; Li et al., 2020; Peng et al.,
2020), asymptomatic but diagnosed through testing (Giordano et al.,
2020; Köhler et al., 2020), and hospitalized (Li et al., 2020; Xia et al.,
2015). The inclusion of more states and the associated parameters
that determine the rates of transfer between states, facilitates matching
measurements with the model outputs. However, it also makes the
model identification problem more formidable, especially because most
of these parameters may change as the epidemic evolves. In fact, it

was shown in Roda, Varughese, Han, and Li (2020) that adding an
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‘‘exposed’’ (E) state (i.e., infected but not yet infective) to a basic SIR
model, actually results in a worse value for the Akaike Information
Criterion. This essentially means that, while an SEIR model can better
represent the data, this improvement does not suffice to justify the
additional model complexity.

It is widely accepted that beyond the initial outbreak, the param-
eters of an SIR model vary in response to changes in social behavior
and medical advances. A common approach to address this consists
of breaking the epidemic into stages and identifying a different set
of model parameters for each stage (Giordano et al., 2020; Xia et al.,
2015), with the times of the transitions between stages typically se-
lected to coincide with the introduction of nonpharmaceutical mea-
sures. The model used in Srivastava, Xu, and Prasanna (2020) assumes
piecewise constant infection rates that remain constant over an inter-
vals of length 𝐽 , that is learned from data. The model in Calafiore,
Novara, and Possieri (2020) expresses the time-varying parameters
through a linear combination of pre-specified time functions, with the
coefficients of these linear combinations identified from data. This
permits more realistic smooth variations of the parameters, but makes
the forecast highly dependent on the choice of the basis functions,
which must be pre-specified and not learned from data. In Al-Salti, Al-
Musalhi, Elmojtaba, and Gandhi (2020), the infection rate is assumed
to be monotone decreasing, evolving according to a deterministic dif-
ferential equation that depends on 3 parameters that can be adjusted.
The model (IHME COVID-19, 2020) considers a time-varying infection
rate that is assumed to be a linear combination of a set of explanatory
covariates that include seasonality, mobility, testing rates, and mask
use. The coefficients of this linear combination are estimated from data.

Stochastic SIR models appeared in many flavors: Beretta et al.
(1988) and Beretta and Takeuchi (1995) considered stochasticity in the
delay from the time an individual gets infected until he/she becomes
infective, leading to an integral differential equation with delays; Ji
and Jiang (2014) introduced stochasticity in the form of an additive
stochastic perturbation, resulting in a stochastic differential equation;
and both these sources of stochasticity appear combined in Beretta
et al. (1998) and Tornatore et al. (2005). A fundamentally different
stochastic model was proposed in Ball and Neal (2002), where individ-
uals enter and exit the infective state at points on Poisson processes.
It considers different rates for the Poisson processes regarding on
whether individuals share the same household, workplace, etc. A more
conventional SEIR model in the form of a continuous-time Markov
process was considered in King et al. (2015). As in Beretta et al. (1998),
Ji and Jiang (2014) and Tornatore et al. (2005), our paper considers
additive stochastic perturbations, whose variances are estimated from
data. However, we shall see that our numerical results for COVID-
19 indicate that this stochastic effect rapidly becomes negligible as
the epidemic progresses. The key stochastic component to our model
will turn out to be the SIR model parameters, which we regard as
realizations of Gaussian random walks with unknown variances that
must be learned from data.

The identification of SIR models based on fitting cumulative data
of the total number of cases and recoveries since the start of the
epidemic has been widely used in the literature (Calafiore et al., 2020;
Comunian et al., 2020; Efimov & Ushirobira, 2020; Giordano et al.,
2020; Köhler et al., 2020; Peng et al., 2020; Stolerman et al., 2015;
Xia et al., 2015; Zou et al., 2020). However, it was shown in King et al.
(2015) that the use of cumulative data can lead to non-independent
successive errors, resulting in confidence intervals that suggest a degree
of precision that is not consistent with the data. In view of this, and as
in Roda et al. (2020) and Srivastava et al. (2020), our identification
procedure is based on daily counts of new patients and deaths, rather
than cumulative counts of infected, removed, and dead patients.

An additional aspect in which our work differs from a large number
of previous works on epidemic forecast is that we learn all model
parameters from data, whereas much of the prior work relies on a
462

combination of fitted parameters with ‘‘clinical information’’ (Giordano b
et al., 2020; Köhler et al., 2020; Li et al., 2020; Peng et al., 2020; Xia
et al., 2015). As noted above, we opted to avoid relying on external data
as all SIR parameters are strongly dependent on social behavior that is
hard to extrapolate over time and space. Notable works that are mostly
data driven include (Calafiore et al., 2020; Comunian et al., 2020;
IHME COVID-19, 2020). However, IHME COVID-19 (2020) brings to
the epidemic model a large corpus of external data in the form of
covariates which are assumed to ‘‘explain’’ the future evolution of
model parameters.

2. SIR stochastic modeling

Denoting by 𝜈(𝑡) the number of patients that were infected during
ay 𝑡 and by 𝜌(𝑡) the number of removed patients on day 𝑡 (i.e., patients

that exited the infective state either through death or recovery), we
have that

𝑆(𝑡 + 1) = 𝑆(𝑡) − 𝜈(𝑡), (1a)

𝐼(𝑡 + 1) = 𝐼(𝑡) + 𝜈(𝑡) − 𝜌(𝑡), (1b)

(𝑡 + 1) = 𝑅(𝑡) + 𝜌(𝑡), (1c)

here 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) denote the cumulative numbers of individuals
usceptible to the infection, infective patients, and removed patients,
espectively, at the start of day 𝑡. A classical SIR model postulates that

(𝑡) = 𝛾𝐼(𝑡), 𝜈(𝑡) =
𝛽 𝐼(𝑡)
𝑁0

𝑆(𝑡), (2)

where 𝛾 denotes the removal rate, which corresponds to the fraction
of patients that leave the infective state on a particular day; 𝑁0 the
otal population; and 𝛽𝐼(𝑡)∕𝑁0 the fraction of susceptible individuals
hat become infected on day 𝑡. This model assumes that this fraction is
roportional to the fraction 𝐼(𝑡)∕𝑁0 of the population that is infective
nd the proportionality constant 𝛽 is known as the infection rate.

We consider two key deviations from this classical SIR model

(i) We add stochasticity, by regarding the daily number of new
infective patients 𝜈(𝑡) and the daily number of removed patients
𝜌(𝑡) as random variables whose means are given by (2) but
exhibit day-to-day stochastic variability.

(ii) We take the infection rate 𝛽(𝑡) to be time-varying and the realiza-
tion of a random process that reflects the changes in population
behavior over time.

hese modifications lead to a stochastic SIR model that replaces (2) by

(𝑡) = 𝛾𝐼(𝑡) + 𝑑𝜌(𝑡), 𝜈(𝑡) = 𝛽(𝑡)
𝐼(𝑡)
𝑁0

𝑆(𝑡) + 𝑑𝜈(𝑡),

here 𝑑𝜈 (𝑡) and 𝑑𝜌(𝑡) are zero-mean independent Gaussian random
ariables that account for the daily stochastic variability of 𝜈(𝑡) and 𝜌(𝑡);
nd the infection rate 𝛽(𝑡) is also a random process. In Section 4.4, we
lso consider a variation of this model with a stochastic time-varying
emoval rate 𝛾(𝑡), but we shall see that this does not appear to introduce
ignificant improvements to the quality of our forecasts.

.1. Measurement model

To identify the dynamics (3) and produce forecasts we use (noisy)
easurement of daily new cases, of the form

𝜈 (𝑡) = 𝜙(𝑡)𝜈(𝑡) +𝑤𝜈 (𝑡),

here the 𝑤𝜈 (𝑡) denote zero-mean independent random variables that
ccount for stochastic errors in the daily counts of new reported cases
nd 𝜙(𝑡) ∈ (0, 1] the fraction of infected patients that are reported as
ew cases on day 𝑡. The need to consider values 𝜙(𝑡) < 1 arises from
he observation that a significant fraction of the newly infected patients
ay not be reported because they are asymptomatic, they have not
een tested, or simply because their disease has not been reported to
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the entity that is keeping track of new cases. It is important to model
𝜙(𝑡) as a time-varying parameter because, as a pandemic progresses,
ne should expect significant variations in the number of asymptotic
eople that get tested and reported. In the sequel, we refer to 𝜙(𝑡) as
he new-cases reporting rate, with the understanding that this parameter
ctually depends on a large number of factors aside from the actual
esting rate of the population.

The use of a measurement model based on daily new cases, rather
han on the cumulative number of cases, is strongly supported by the
esults in King et al. (2015) showing that identification based on cumu-
ative measurements with uncorrelated noise leads to an underestimate
f uncertainty.

In addition to daily counts of new cases, we also assume that
e have available measurements that are roughly proportional to the
umber of infections, such as the daily number of deaths, the number
f hospitalized patients, or the number of patients in intensive care
nits (ICU). The results presented here use only the number of deaths,
hich is available for a very large number of countries and regions.
his measurement model takes the form:

𝐷(𝑡) = 𝜔(𝑡)𝐼(𝑡) +𝑤𝐷(𝑡),

here 𝜔(𝑡) denotes the deaths reporting rate, which corresponds to the
xpected value of the fraction of infective patients that is likely to be
eported as dead due to the epidemic on day 𝑡; and where the 𝑤𝐷(𝑡) are
ero-mean independent random variables that account for stochastic
rrors. In practice, a fraction of the pandemic-related deaths may not be
eported as such because of asymptomatic cases, so the deaths reporting
ate 𝜔(𝑡) must actually reflect the fraction of infected patients that died
nd whose death was associated with the pandemic. Variability in 𝜔(𝑡)
hus arises from a combination of factors that include medical advances
n treating the disease, load on the healthcare system that may limit the
atients’ access to healthcare resources, as well as testing and the policy
sed to determine which deaths are attributed to the pandemic.

.2. Full time-varying model

The conservation law

(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑆(1) + 𝐼(1) + 𝑅(1) =∶ 𝑁0.

nable us to eliminate one of the three state variables in (1) and write
he full model presented above in terms of the numbers of removed 𝑅(𝑡)
nd unsusceptible 𝑈 (𝑡) ∶= 𝑅(𝑡) + 𝐼(𝑡), ∀𝑡 individuals, leading to

𝑅(𝑡 + 1) = 𝑅(𝑡) + 𝛾
(

𝑈 (𝑡) − 𝑅(𝑡)
)

+ 𝑑𝜌(𝑡), (3a)

𝑈 (𝑡 + 1) = 𝑈 (𝑡) + 𝛽(𝑡)
(

𝑈 (𝑡) − 𝑅(𝑡)
)

(

1 −
𝑈 (𝑡)
𝑁0

)

+ 𝑑𝜈 (𝑡), (3b)

𝑦𝜈 (𝑡) = 𝜙(𝑡)
(

𝛽(𝑡)
(

𝑈 (𝑡) − 𝑅(𝑡)
)

(

1 −
𝑈 (𝑡)
𝑁0

)

+ 𝑑𝜈 (𝑡)
)

+𝑤𝜈 (𝑡), (3c)

𝑦𝐷(𝑡) = 𝜔(𝑡)
(

𝑈 (𝑡) − 𝑅(𝑡)
)

+𝑤𝐷(𝑡), (3d)

where we used the facts that 𝐼(𝑡) = 𝑈 (𝑡)−𝑅(𝑡), 𝑆(𝑡) = 𝑁0−𝑈 (𝑡), ∀𝑡. This
selection of states has the benefit that the dynamics in (3a)–(3b) have
independent disturbances 𝑑𝜌(𝑡) and 𝑑𝜈 (𝑡), which would not be the case,
e.g., if we were to work with the states 𝑅(𝑡) and 𝐼(𝑡).

The key problem under consideration is to use measurements 𝑦𝜈 (𝑡),
𝑦𝐷(𝑡) taken over a window of time 𝑡 ∈ {1, 2,… , 𝑇 } to produce forecasts
for the values of the same measurements on a future horizon 𝑡 ∈
{𝑇 + 1, 𝑇 + 1,… , 𝑇 + 𝑃 }. To solve this problem we use the model
(3) to compute the a posteriori distribution of the forecasts given the
available measurements, with all model parameters in (3) learned from
the available measurements. These parameters include the removal
rate 𝛾, the original population 𝑁0, the infection rate 𝛽(𝑡), the deaths
reporting rate 𝜔(𝑡), and the new-cases reporting rate 𝜙(𝑡). We take the
time-varying parameters to be Gaussian random walks of the form

𝛽(𝑡 + 1) = 𝛽(𝑡) + 𝑑 (𝑡), (4a)
463
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𝜙(𝑡 + 1) = 𝜙(𝑡) + 𝑑𝜙(𝑡), (4b)

𝜔(𝑡 + 1) = 𝜔(𝑡) + 𝑑𝜔(𝑡), (4c)

here the 𝑑𝛽 (𝑡), 𝑑𝜔(𝑡), 𝑑𝜙(𝑡) are independent zero-mean Gaussian pro-
esses with unknown variances, which are independent of the dis-
urbances and measurement noise in (3). In practice, the specific re-
lizations of these random processes will depend on a multitude of
vents, including the population’s behavior, the enforcement of non-
harmaceutical interventions, the availability and policies regarding
esting of symptomatic and asymptomatic individuals, quarantine poli-
ies and practice, etc.

Under the model (4a) with zero-mean Gaussian increments, given
specific value for the parameter 𝛽 at day 𝑡, the most likely value of
at day 𝑡 + 1 is still 𝛽(𝑡), in the absence of any additional information.
owever, given numerical values for future measurements (3c)–(3d),

he a posteriori distribution of 𝛽(𝑡) will change and 𝛽(𝑡) will generally
ot be the most likely value for 𝛽(𝑡 + 1). It is thus important to
mphasize that the random walk model in (4) simply encodes an a
riori assumption on the evolution of the time-varying parameters. We
hall see in the numerical results shown in Section 4 that the estimates
or these parameters derived from their a posteriori distributions will
ot have zero-mean increments.

Zero-mean independent increments for the parameters can be
iewed as a very weak model that makes no a priori assumptions on
ow each parameter will vary from one day to the next. This assump-
ion reflects the desire expressed in the introduction to make as few
ssumptions as possible on the evolution of the epidemic parameters.

In terms of forecasting, the use of zero-mean increments in (4)
hat are independent across time means that the past measurements
ollected up to time 𝑇 provide no information about the value of
uture increments 𝑑𝛽 (𝑡), 𝑑𝜙(𝑡), 𝑑𝜔(𝑡), 𝑡 > 𝑇 and thus their most likely

posteriori value is still zero. Consequently, the mean a posteriori
alues of 𝛽(𝑡), 𝜙(𝑡), and 𝜔(𝑡) will remain constant after time 𝑇 . However,
he past data does provide information about the (unknown) variances
f these increments and therefore the future forecasts will take into
ccount that the a posteriori variance of the parameters grows linearly
ith time at a rate determined by the estimated increments’ variances,
hich will be directly reflected in the confidence intervals associated
ith the forecasts.

emark 1 (Hospitalization and ICU Use). When we have available daily
easurements of the number of hospitalized patients 𝑦𝐻 (𝑡) and/or the
umber of patients in ICU units 𝑦ICU(𝑡), the model (3) can be expanded
o include measurements of the form

𝑦𝐻 (𝑡) = 𝜔𝐻 (𝑡)
(

𝑈 (𝑡) − 𝑅(𝑡)
)

+𝑤𝐻 (𝑡),

ICU(𝑡) = 𝜔ICU(𝑡)
(

𝑈 (𝑡) − 𝑅(𝑡)
)

+𝑤ICU(𝑡),

nd all the results in this paper extend trivially to this enlarged set of
easurements. □

.3. Identifiability and forecastability

For every value of the constants �̄�0, �̄�(1) > 0, making the change of
ariables

0 → �̄�0, 𝛽(𝑡) →
�̄�(1)�̄�0
𝜙(1)𝑁0

𝛽(𝑡), (5a)

𝜙(𝑡) →
�̄�(1)
𝜙(1)

𝜙(𝑡), 𝜔(𝑡) →
�̄�(1)
𝜙(1)

𝜔(𝑡), (5b)

(𝑡) → �̄�0 −
𝜙(1)
�̄�(1)

(𝑁0 − 𝑅(𝑡)), 𝑈 (𝑡) → �̄�0 −
𝜙(1)
�̄�(1)

(𝑁0 − 𝑈 (𝑡)), (5c)

in the model (3) results in precisely the same measurements 𝑦𝜈 (𝑡), 𝑦𝐷(𝑡)
for the same measurement noise 𝑤𝜈 (𝑡), 𝑤𝐷(𝑡) and disturbances

𝜌(𝑡) →
𝜙(1)

𝑑𝜌(𝑡), 𝑑𝜈 (𝑡) →
𝜙(1)

𝑑𝜈 (𝑡), (6a)

�̄�(1) �̄�(1)
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𝑑𝛽 (𝑡) →
�̄�(1)�̄�0

𝜙(1)𝑁0
𝑑𝛽 (𝑡), 𝑑𝜙(𝑡) →

�̄�(1)
𝜙(1)

𝑑𝜙(𝑡), 𝑑𝜔(𝑡) →
�̄�(1)
𝜙(1)

𝑑𝜔(𝑡), (6b)

hich means that the joint distribution of the outputs of the model
3) would not change under the given transformation, if we were to
djust the (unknown) variances of the disturbances to match (6). It
urns out that (5)–(6) corresponds to the only time-invariant affine
ransformation of 𝑈 (𝑡) and 𝑅(𝑡) that preserves the structure of the SIR
odel (3) without changing the outputs.

A key consequence of the above observation is that, in the ab-
ence of additional information, the model outputs do not permit the
dentification of the original population 𝑁0 nor the initial new-cases

reporting rate 𝜙(1); as the true values of these parameters could be
replaced by arbitrary values �̄�0, �̄�(1) without changing the outputs
distribution. Moreover, any estimates of the remaining parameters can
only be known up to the transformation in (5)–(6). In spite of this,
and precisely because this transformation does not affect the output’s
probability distribution, it remains possible to produce forecasts of
future outputs, even if states estimates will have fundamental ambigu-
ities. This argument shows that the model (3) is not identifiable, in the
sense that the measurements available do not suffice to identify unique
values for the states and parameters (Comunian et al., 2020; Miao, Xia,
Perelson, & Wu, 2011).

The lack of state/parameter identifiability of (3), enable us to
simplify this model by setting arbitrary values for 𝑁0 and 𝜙(1), without
compromising the quality of the forecasts. We shall see in our numerical
results that, once this ambiguity has been resolved, we obtain a pos-
teriori probability density function of future outputs with finite error
covariances, which means that the outputs of (3) are forecastable.

Remark 2. It should be noted that the transformation in (5) can result
in (not physically meaningful) negative values for 𝑅(𝑡) and 𝑈 (𝑡) if we
pick �̄�0 too small. It may also result in rates 𝜙 larger than 1, if the
initial rate 𝜙(1) was smaller than 1 and it increased to values above
that initial one. However, regardless of whether or not these estimates
are ‘‘physically meaningful’’ the forecasts will remain unchanged. □

3. Nonlinear system identification and forecasting

We are interested in predicting the future states and outputs of a
general stochastic nonlinear system of the form1

𝑥𝑡+1 = 𝑓 (𝑥𝑡; 𝜃) + 𝑑𝑡, ∀𝑡 ∈ {1, 2,…}, (7a)

based on a finite set of measurements

𝑦𝑡 = 𝑔(𝑥𝑡; 𝜃) +𝑤𝑡, ∀𝑡 ∈ {1, 2,…}, (7b)

where 𝑥𝑡 ∈ R𝑛𝑥 denotes the state of the system, 𝑦𝑡 ∈ R𝑛𝑦 the measured
output, 𝑑𝑡 ∈ R𝑛𝑥 a stochastic disturbance, and 𝑤𝑡 ∈ R𝑛𝑦 a stochastic

easurement noise. The system dynamics in (7a), the measurements
quation in (7b), and the probability distributions of 𝑑𝑡 and 𝑤𝑡 depend

on an unknown parameter vector 𝜃 taking value in a given set 𝛩 ⊂ R𝑛𝜃 .
Measurements are available for (past) times 𝑡 ∈ {1,… , 𝑇 } for some

integer 𝑇 > 0 and our goal is to forecast the state and output for future
times 𝑡 ∈ {𝑇 + 1,… , 𝑇 + 𝑃 } for some integer 𝑃 > 0. Towards this goal,
we need to compute a maximum likelihood estimate �̂� for 𝜃

�̂� = arg max
𝜃∈𝛩

log 𝑝𝑦(𝑦1,… , 𝑦𝑇 ; 𝜃), (8)

where 𝑝𝑦(⋅) denotes the likelihood function, and then use this estimate
to compute the a posteriori conditional distributions of the past and
future states and future outputs, given the measurements:

𝑝𝑥,𝑦+|𝑦(𝑥1,… , 𝑥𝑇+𝑃 , 𝑦𝑇+1,… , 𝑦𝑇+𝑃 |𝑦1,… , 𝑦𝑇 ; �̂�). (9)

1 To shorten the formulas, in this section we denote time dependence
hrough a subscript, as in 𝑥 rather than 𝑥(𝑡).
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𝑡

This could be accomplished by first computing the estimate �̂� that
inimizes (8) and subsequently using an extended Kalman filter (or
variation of it, like an unscented Kalman filter) to compute the

onditional distribution of the future states and outputs in (9). The pro-
edure proposed here jointly computes (8) and (9), without explicitly
omputing the output likelihood function that appears in (8).

.1. Maximum likelihood estimation

For nonlinear systems, it is generally hard to compute the probabil-
ty distribution of the measured outputs that appears in the maximum
ikelihood optimization in (8). However, even though the dynamics
n (7) are nonlinear, it is straightforward to compute the joint distri-
ution of the state and output for this model under mild Markovian
ssumptions, as noted in the following result, which will be proved in
ection 3.3.

emma 1. Assume that the disturbances and noise at each time 𝑡 are
onditionally independent of all past disturbances and noise, given the state
t time 𝑡, specifically:

𝑑𝑡 ,𝑤𝑡
(𝑑𝑡, 𝑤𝑡|𝑥𝑡, 𝑑𝑡−1,… , 𝑑1, 𝑤𝑡−1,… , 𝑤1; 𝜃)

= 𝑝𝑑𝑡 ,𝑤𝑡

(

𝑑𝑡, 𝑤𝑡|𝑥𝑡; 𝜃
)

, ∀𝑡 ∈ {1, 2,…} (10)

here 𝑝𝑑𝑡 ,𝑤𝑡
(⋅|⋅) denotes the joint conditional probability density function

pdf) of 𝑑𝑡 and 𝑤𝑡. In this case, the logarithm of the joint probability density
unction of the output and state sequences for the model (7) is given by

og 𝑝𝑥,𝑦(𝑦1,… , 𝑦𝑇+𝑃 , 𝑥1,… , 𝑥𝑇+𝑃+1; 𝜃)

=
𝑇+𝑃
∑

𝑡=1
log 𝑝𝑑𝑡 ,𝑤𝑡

(

𝑥𝑡+1 − 𝑓 (𝑥𝑡; 𝜃), 𝑦𝑡 − 𝑔(𝑥𝑡; 𝜃) ∣ 𝑥𝑡; 𝜃
)

. □ (11)

The marginal distribution of the measurements needed for maximum
ikelihood estimation in (8) can be obtained from the state and output
oint distribution in (11), using

𝑦(𝑦1,… , 𝑦𝑇 ; 𝜃) = ∫ 𝑝𝑥,𝑦(𝑦1,… , 𝑦𝑇+𝑃 , 𝑥1,… , 𝑥𝑇+𝑃+1; 𝜃)

𝑑𝑦𝑇+1 ⋯ 𝑑𝑦𝑇+𝑃 𝑑𝑥1 ⋯ 𝑑𝑥𝑇+1, (12)

hich requires an integration of the joint distribution with respect to
ll the state variables and future outputs; an operation that gener-
lly cannot be done in closed form for nonlinear systems. However,
he following result (proved in Section 3.3) provides a procedure
o avoid this integration based on Laplace’s method to approximate
ntegrals (MacKay, 2003): Consider a measurement vector 𝑌 with a
robability density function of the form

𝑌 (𝑌 ; 𝜃) = ∫ 𝑝𝑌 ,𝑍 (𝑌 ,𝑍; 𝜃)𝑑𝑍,

here 𝜃 is a vector of unknown parameters taking values in some set
and 𝑝𝑌 ,𝑍 (𝑌 ,𝑍; 𝜃) is the joint distribution of 𝑌 and a latent random

ariable 𝑍 ∈ R𝑛𝑍 that needs to be integrated out.

emma 2. Assume that, for every 𝜃 and 𝑌 , the conditional distribution
f 𝑍 given 𝑌 is a multivariable Gaussian. Then the Hessian matrix

(𝑌 ,𝑍; 𝜃) ∶=
𝜕2 log 𝑝𝑌 ,𝑍 (𝑌 ,𝑍; 𝜃)

𝜕𝑍2
(13)

oes not depend on 𝑍,

E[𝑍|𝑌 ] = arg max
𝑍∈R𝑛𝑍

log 𝑝𝑌 ,𝑍 (𝑌 ,𝑍; 𝜃), CoV[𝑍|𝑌 ] = −𝐻(𝑌 ,𝑍; 𝜃)−1,

(14)

nd

log 𝑝 (𝑌 ; 𝜃) =
𝑛𝑍 log(2𝜋)

−
log det

(

−𝐻(𝑌 ,𝑍; 𝜃)
)

𝑌 2 2
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+ max
𝑍∈R𝑛𝑍

log 𝑝𝑌 ,𝑍 (𝑌 ,𝑍; 𝜃). (15)

Consequently, the maximum likelihood estimator for 𝜃 can be obtained by
solving

arg max
𝜃∈𝛩

(

−1
2
log det

(

−𝐻(𝑌 ,𝑍; 𝜃)
)

+ max
𝑍∈R𝑛𝑍

log 𝑝𝑌 ,𝑍 (𝑌 ,𝑍; 𝜃)
)

, (16)

and, in view of (14), the associated minimum variance estimator of 𝑍 is

�̂� ∶= arg max
𝑍∈R𝑛𝑍

log 𝑝𝑌 ,𝑍 (𝑌 ,𝑍; 𝜃)

with associated error covariance equal to

E[(𝑍 − �̂�)(𝑍 − �̂�)′|𝑌 ] = −𝐻(𝑌 ,𝑍; 𝜃)−1. □ (17)

Making the following associations

𝑌 ∶= (𝑦1,… , 𝑦𝑇 ) ∈ R𝑛𝑦𝑇 ,

𝑍 ∶= (𝑦𝑇+1,… , 𝑦𝑇+𝑃 , 𝑥1,… , 𝑥𝑇+𝑃+1) ∈ R𝑛𝑍 , 𝑛𝑍 ∶= 𝑛𝑦𝑃 + 𝑛𝑥(𝑇 + 𝑃 ),

with the joint probability density function of these variables given by
(11) in Lemma 1, the formula (16) in Lemma 2 provides a method to
compute the maximum likelihood estimate for 𝜃. As a side product, we
also obtain the mean and covariance matrix of the a posteriori distri-
bution in (9). This enable us to simultaneously obtain the maximum
likelihood estimate of 𝜃 and the corresponding a posteriori distribution
of the state and future output.

When the functions 𝑓 and 𝑔 in (7) are nonlinear and/or the distur-
bance and noise distributions in (10) are not multivariable Gaussian,
the conditional distribution of the state given the output measurements
will likely also not be Gaussian and therefore (15) should be taken
as an approximation of the true marginal distribution. We shall see in
the proof of Lemma 2 that the Gaussian assumption is used to justify
truncating the Taylor series of 𝑍 ↦ log 𝑝𝑧|𝑦(𝑍|𝑌 ; 𝜃) at its second term
since this function is quadratic for Gaussian distributions. For non-
Gaussian distributions, this truncation will introduce an error, but it
is possible to establish a bound on this error. This is due to the fact
that the Taylor series of the joint distribution 𝑍 ↦ log 𝑝𝑌 ,𝑍 (𝑌 ,𝑍) and
the conditional distribution 𝑍 ↦ log 𝑝𝑧|𝑦(𝑍|𝑌 ) have exactly the same
terms and we have an explicit formula (11) for the joint distribution
(see Remark 4 in Section 3.3.).

Remark 3 (Numerical Issues Due to the Lack of Identifiability). When
trying to apply Lemma 2 to models that are not identifiable, in the
sense that multiple realizations for 𝑍 lead to the same value of the
joint distribution 𝑝𝑌 ,𝑍 (𝑌 ,𝑍; 𝜃), the Hessian matrix 𝐻(𝑌 ,𝑍; 𝜃) may be
singular, leading to ‘‘infinite’’ error covariance in (17).

For poorly identifiable models, the matrix 𝐻(𝑌 ,𝑍; 𝜃) may be non-
singular, but with very small singular values, making the log-
determinant in (16) strongly negative and often causing numerical
issues. To avoid this, one can replace the optimization in (16) by

arg max
𝜃∈𝛩

(

−1
2
log det

(

𝜖𝐼 −𝐻(𝑌 ,𝑍; 𝜃)
)

+ max
𝑍∈R𝑛𝑍

log 𝑝𝑌 ,𝑍 (𝑌 ,𝑍; 𝜃)
)

, (18)

for a small constant 𝜖 > 0. The addition of the constant term 𝜖𝐼 will
have little affect on the estimate of 𝜃, as long as this variable does not
affect significantly the kernel of 𝐻(𝑌 ,𝑍; 𝜃), which can be numerically
verified. □

3.2. A scalable iterative algorithm

For the problem at hand, (16) involves a joint optimization with
respect to 𝑛𝜃 parameters and 𝑛𝑍 ∶= 𝑛𝑦𝑃 + 𝑛𝑥(𝑇 +𝑃 ) state variables. For
large time horizons 𝑇 + 𝑃 , the computation complexity of such opti-
mization can be greatly reduced by using an iterative block coordinate
ascent algorithm:

Algorithm 1. Given a measurement vector 𝑌 and a tolerance 𝜖tol, the
̂ ̂
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following algorithm returns estimates 𝜃𝑘 and 𝑍𝑘:
1. Pick initial values for �̂�0, �̂�0 and set 𝑘 = 1.
2. Update estimates using:

�̂�𝑘 ∶= arg max
𝑍∈R𝑛𝑍

log 𝑝𝑌 ,𝑍 (𝑌 ,𝑍; �̂�𝑘−1) (19)

�̂�𝑘 ∶= arg max
𝜃∈𝛩

(

−1
2
log det

(

−𝐻(𝑌 , �̂�𝑘; 𝜃)
)

+ log 𝑝𝑌 ,𝑍 (𝑌 , �̂�𝑘; 𝜃)
)

(20)

3. Increment 𝑘 and go back to step 2 until ‖�̂�𝑘 − �̂�𝑘−1‖ ⩽ 𝜖tol.

In general, block coordinate ascent/descent algorithms are not guar-
nteed to terminate (Bertsekas, 1999). However, upon a successful
ermination, the pair (�̂�𝑘, �̂�𝑘−1) satisfies the first order optimality con-

ditions of the optimization in (19) and the pair (�̂�𝑘, �̂�𝑘) satisfies the first
order optimality conditions of the optimization in (20). Since the first
order optimality conditions of (16) are precisely the union of the first
order optimality condition of (19) and (20), we conclude that the pair
(�̂�𝑘, �̂�𝑘) satisfies the first order optimality conditions of (16) up to the
𝜖tol discrepancy between �̂�𝑘−1 and �̂�𝑘. In general, this does not guarantee
that Algorithm 1 will find a global maximum of the likelihood function,
but it does guarantees that termination can only take place at a local
maximum (up to the 𝜖tol error). In practice, we have observed that
constraining the parameter values 𝜃 and states/outputs 𝑍 to physically
meaningful sets consistently leads to the same optimum regardless of
how we initialize the numerical solvers.

The key advantage of the iterative approach in Algorithm 1 with
respect to solving the single-shot full optimization in (16) is that (i)
the number 𝑛𝑍 of optimization variables in (19) scales linearly with the
number of time instants of interest and (ii) the number of optimization
variables in (20) is equal to the number 𝑛𝜃 of parameters, regardless of
the horizon length. Furthermore, while the total number of entries of the
Hessian matrix (13) scales quadratically with 𝑛𝑍 , the number of non-
zero entries of this matrix only scales linearly with 𝑛𝑍 . This is because,
the structure of (11) leads to

𝜕2 log 𝑝𝑌 ,𝑍 (𝑌 ,𝑍; �̂�𝑘−1)
𝜕𝑥𝑡𝜕𝑥𝑡+𝑘

= 0,

for every 𝑘 ∉ {−1, 1, 0}. In practice, this means that we can use second
order Newton methods to solve (19) with computation times that only
grow linearly with 𝑛𝑍 , provided that we compute the Newton direction
using sparse solvers for linear equations (Davis, Gilbert, Larimore,
& Ng, 2004; Hespanha, 2017). Regarding the optimization in (20),
while the number of optimization variables is typically small and
independent of the time horizon length, one still needs to compute
the log-determinant of a large matrix. Also here, we can explore the
sparsity of (13) by performing a sparse LDL factorization and obtain the
determinant by simply multiplying the entries of the diagonal matrix,
or adding their logarithms to directly obtain the log-determinant of the
matrix, which is numerically much more stable.

3.3. Proof of Lemmas 1 and 2

Proof of Lemma 1. For each 𝑡 ⩾ 1, we can expand the joint probability
density function of the state up to time 𝑡 + 1 and measurements up to
time 𝑡 as

𝑝(𝑦1,… , 𝑦𝑡, 𝑥1,… , 𝑥𝑡+1) = 𝑝(𝑥𝑡+1, 𝑦𝑡 ∣ 𝑥1,… , 𝑥𝑡, 𝑦1,… , 𝑦𝑡−1)

𝑝(𝑦1,… , 𝑦𝑡−1, 𝑥1,… , 𝑥𝑡), ∀𝑡 ⩾ 0,

where, for simplicity of notation, we omitted all dependencies on the
parameter vector 𝜃. In view of (7) and the independence assumption
(10), we have that

𝑝(𝑥𝑡+1, 𝑦𝑡 ∣ 𝑥1,… , 𝑥𝑡, 𝑦1,… , 𝑦𝑡−1)

= 𝑝𝑑𝑡 ,𝑤𝑡

(

𝑥𝑡+1 − 𝑓 (𝑥𝑡; 𝜃), 𝑦𝑡 − 𝑔(𝑥𝑡; 𝜃) ∣ 𝑥1,… , 𝑥𝑡, 𝑦1,… , 𝑦𝑡−1
)

= 𝑝𝑑𝑡 ,𝑤𝑡

(

𝑥𝑡+1 − 𝑓 (𝑥𝑡; 𝜃), 𝑦𝑡 − 𝑔(𝑥𝑡; 𝜃) ∣ 𝑥𝑡
)

, (21)
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and therefore

𝑝(𝑦1,… , 𝑦𝑡, 𝑥1,… , 𝑥𝑡+1)

= 𝑝𝑑𝑡 ,𝑤𝑡

(

𝑥𝑡+1 − 𝑓 (𝑥𝑡; 𝜃), 𝑦𝑡 − 𝑔(𝑥𝑡; 𝜃) ∣ 𝑥𝑡
)

𝑝(𝑦1,… , 𝑦𝑡−1, 𝑥1,… , 𝑥𝑡).

Iterating this from 𝑡 = 1 to 𝑡 = 𝑇 + 𝑃 leads to

𝑝(𝑦1,… , 𝑦𝑇+𝑃 , 𝑥1,… , 𝑥𝑇+𝑃+1) =
𝑇+𝑃
∏

𝑡=1
𝑝𝑑𝑡 ,𝑤𝑡

(

𝑥𝑡+1−𝑓 (𝑥𝑡; 𝜃), 𝑦𝑡−𝑔(𝑥𝑡; 𝜃) ∣ 𝑥𝑡
)

,

from which (11) follows by taking logarithms. ■

Proof of Lemma 2. Denoting the conditional distribution of 𝑍 given
𝑌 by

𝑝𝑍|𝑌 (𝑍|𝑌 ; 𝜃) ∶=
𝑝𝑌 ,𝑍 (𝑌 ,𝑍; 𝜃)

𝑝𝑌 (𝑌 ; 𝜃)
. (22)

e have that

log 𝑝𝑌 (𝑌 ; 𝜃) + log 𝑝𝑍|𝑌 (𝑍|𝑌 ; 𝜃) = log 𝑝𝑌 ,𝑍 (𝑌 ,𝑍; 𝜃) (23)

nd therefore
𝜕2 log 𝑝𝑍|𝑌 (𝑍|𝑌 ; 𝜃)

𝜕𝑍2
=

𝜕2 log 𝑝𝑌 ,𝑍 (𝑌 ,𝑍; 𝜃)
𝜕𝑍2

, ∀𝑍, (24a)

log 𝑝𝑌 (𝑌 ; 𝜃) + max
𝑍

log 𝑝𝑍|𝑌 (𝑍|𝑌 ; 𝜃) = max
𝑍

log 𝑝𝑌 ,𝑍 (𝑌 ,𝑍; 𝜃). (24b)

Moreover, since 𝑝𝑍|𝑌 (𝑍|𝑌 ; 𝜃) is a multivariable Gaussian, we must have

log 𝑝𝑍|𝑌 (𝑍|𝑌 ; 𝜃) = −
𝑛𝑍
2

log(2𝜋)

+1
2
log det 𝛴−1

𝑍|𝑌 − 1
2
(𝑍 − 𝜇𝑍|𝑌 )′𝛴−1

𝑍|𝑌 (𝑍 − 𝜇𝑍|𝑌 ),(25)

here 𝜇𝑍|𝑌 and 𝛴𝑍|𝑌 denote its mean and covariance matrix. This
llows us to conclude that

rg max
𝑍

log 𝑝𝑍|𝑌 (𝑍|𝑌 ; 𝜃) = 𝜇𝑍|𝑌 , (26a)

𝜕2 log 𝑝𝑍|𝑌 (𝑍|𝑌 ; 𝜃)

𝜕𝑍2
= −𝛴−1

𝑍|𝑌 , (26b)

max
𝑍

log 𝑝𝑍|𝑌 (𝑍|𝑌 ; 𝜃) = −
𝑛𝑍
2

log(2𝜋) + 1
2
log det 𝛴−1

𝑍|𝑌

= −
𝑛𝑍
2

log(2𝜋)

+ 1
2
log det

(

−
𝜕2 log 𝑝𝑍|𝑌 (𝑍|𝑌 ; 𝜃)

𝜕𝑍2

)

. (26c)

e conclude from (24a) and (26b) that

𝜕2 log 𝑝𝑌 ,𝑍 (𝑌 ,𝑍; 𝜃)
𝜕𝑍2

=
𝜕2 log 𝑝𝑍|𝑌 (𝑍|𝑌 ; 𝜃)

𝜕𝑍2
= −𝛴−1

𝑍|𝑌 , ∀𝑍,

oes not depend on 𝑍, and then from (24b) and (26c) that

og 𝑝𝑌 (𝑌 ; 𝜃) = −max
𝑍

log 𝑝𝑍|𝑌 (𝑍|𝑌 ; 𝜃) + max
𝑍

log 𝑝𝑌 ,𝑍 (𝑌 ,𝑍; 𝜃)

=
𝑛𝑍
2

log(2𝜋) − 1
2
log det

(

−
𝜕2 log 𝑝𝑌 ,𝑍 (𝑌 ,𝑍; 𝜃)

𝜕𝑍2

)

+ max
𝑍

log 𝑝𝑌 ,𝑍 (𝑌 ,𝑍; 𝜃),

from which the result follows. ■

Remark 4 (Non-Gaussian a Posteriori). When the a posteriori distribu-
tion is not a multivariable Gaussian, one can view (25) as a second
order truncation of the Taylor series of 𝑍 ↦ log 𝑝𝑍|𝑌 (𝑍|𝑌 ; 𝜃), which
means that this formula will have an error due to higher order terms
in the series. In fact, such a truncation of this Taylor series is at the
basis for the Laplace method to approximate integrals (MacKay, 2003).
In view of (23), when 𝑍 ↦ log 𝑝𝑍|𝑌 (𝑍|𝑌 ; 𝜃) and 𝑍 ↦ log 𝑝𝑌 ,𝑍 (𝑌 ,𝑍; 𝜃)
are analytic, both functions have the same Taylor series terms of
order higher than 0 and therefore one can estimate the error in the
truncation (25) by computing the terms in the Taylor series of 𝑍 ↦
log 𝑝𝑌 ,𝑍 (𝑌 ,𝑍; 𝜃) of order higher than 2. □
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4. Numerical results

We now summarize the results obtained by applying the identifica-
tion/forecasting procedure outlined in Section 3 to the SIR stochastic
model in Section 2. The measurements used include time series of
COVID-19 daily cases and daily deaths obtained from the following
sources:

1. the European Center for Disease Prevention and Control
(ECDPC) (European Center for Disease Prevention and Control,
0000) for worldwide data outside the United States of America,
Brazil, and Portugal;

2. the COVID-19 Data Repository by the Center for Systems Science
and Engineering (CSSE) at Johns Hopkins University (Center
for Systems Science and Engineering (CSSE) at Johns Hopkins
University, 2020) for State and City data within the United States
of America;

3. the Portuguese Direção-Geral de Saúde for data in Portugal (Por-
tuguese Direção-Geral de Saúde, 2020).

4. Brasil.IO based on data collected from the Secretarias Estadu-
ais de Saúde for State and City data within Brazil (CoronaCi-
dades.org, 0000).

We produced forecasts for every country represented in the ECDPC
dataset that, at some point in time, reported more than 10 new COVID-
19 cases in one day. For a few countries, including the United States of
America and Brazil, we had available data at the state/province/city
level and produced forecasts at finer regional levels. The ECDPC and
CSSE time series go as far back as February 2020 and contain daily
results up to the present. Our full set of results is available at (COVID-
19, 2020) and includes 144 countries and regions around the world, but
here we only show a subset of results for Italy, United Kingdom, Ger-
many Portugal, Japan, India, and the US states of New York, California,
Texas, Illinois, and Montana. This selection covers a representative set
of countries/regions in terms of population size and density, timing and
scope of nonpharmaceutical measures, population behavior, etc.

For a very large number of countries/regions, the time series with
the daily number of cases exhibit large weekly variations, typically
with a smaller number of cases reported during the weekends. In fact,
for a few countries/time-periods no new cases/deaths are reported in
the weekend and a very large number of cases are reported every
Monday,2 leading to a larger delay between the time a patient becomes
infective and the case is reported. To remove this day-of-the-week
effect, all our forecasts were computed weekly with data up to the
latest Wednesday. In addition, all time series were pre-filtered with a
7-day moving average filter that tries to equalize the delay between
infectiveness/death and reporting. For consistency, we have done this
for every country/region, regardless of whether or not the data showed
day-of-the-week effects. For countries/regions where the weekend ef-
fect is negligible or where this effect only appeared during a fairly
brief period of time, the introduction of 7-day averaging makes little
difference in terms of the forecasts. But for countries where this effect
has been persistent, removing the averaging inflates the estimates of
the noise/disturbances since this effect has to be explained through the
stochastic elements of the model.

4.1. Methodology

All estimates and forecasts reported in this section were obtained
using the Algorithm 1 with the vector 𝑌 containing daily measure-
ments of new cases 𝑦𝜈(𝑡) and deaths 𝑦𝐷(𝑡) over a given time range
𝑡 ∈ {1, 2,… , 𝑇 }. The latent random variable 𝑍 contains the full state
𝑅(𝑡), 𝑈 (𝑡), 𝛽(𝑡), 𝜙(𝑡), 𝜔(𝑡) of the model (3)–(4) over an extended time
range 𝑡 ∈ {1, 2,… , 𝑇 + 𝑃 } that includes forecasts up to 𝑃 = 21 days

2 See, e.g., ECDPC dataset for France during the month of July 2020.
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Fig. 1. State estimates and forecasts for the daily numbers of new cases and deaths for the model (3)–(4), based on data available up to mid-to-late December (depending on the
source of data). The forecasts extend for 3 weeks past the available data. In all plots, the dots correspond to the daily measurements of new cases and deaths, the solid lines to a
posteriori state estimates, and the dashed lines to 95% confidence intervals.
into the future; the removal rate 𝛾; and measurements forecasts for new
cases 𝑦𝜈 (𝑡) and deaths 𝑦𝐷(𝑡) over 𝑡 ∈ {𝑇 + 1,… , 𝑇 + 𝑃 }. The parameter
ector 𝜃 includes the variances of the state disturbances 𝑑𝜌(𝑡), 𝑑𝜈 (𝑡);
he variances of the parameter increments 𝑑𝛽 (𝑡), 𝑑𝜔(𝑡), 𝑑𝜙(𝑡); and the

variances of the noises 𝑤𝜈 (𝑡) and 𝑤𝐷(𝑡). All 95% confidence intervals
reported are based on the a posteriori covariance matrix computed
using (17), which we marginalize for the different variables to obtain
a posteriori standard deviations.

For essentially all datasets, we observed that Algorithm 1 converged
to estimates corresponding to zero variances for the disturbances 𝑑𝜌(𝑡),
𝑑𝜈 (𝑡) (or to negligible values) so we eventually removed those pa-
rameters from 𝜃 and set them to fixed values that were sufficiently
low not to affect any of the other estimates. This improved numerical
conditioning, because very small disturbance variances result in poorly
conditioned Hessian matrices 𝐻(𝑌 , �̂�𝑘; 𝜃) in (20).

The optimizations in (19)–(20) were carried out by primal–dual
interior-point solvers built using the TensCalc toolbox (Hespanha,
467

2017). The solvers generated by TensCalc explore sparsity of the
Hessian matrix, resulting in computation times that scale linearly with
the horizon length (see Section 3.2). Algorithm 1 was initialized with
a rough state estimated obtained as follows:

1. The new-cases reporting rate was initialized at 𝜙(𝑡) = 1, ∀𝑡 ⩾ 1.
Since 𝜙(1) is not identifiable (see Section 3), the initial rate 𝜙(1)
was fixed at 1 and only subsequent 𝜙(𝑡), 𝑡 > 1 were optimized.

2. The removal rate was initialized at the (somewhat arbitrary)
value 𝛾 = 1∕21 (21 days time constant).

3. The initialization for the state 𝑈 (𝑡) was obtained by neglecting
noise and disturbances from (3b)–(3c), which leads

𝑈 (𝑡 + 1) = 𝑈 (𝑡) + 𝑦𝜈 (𝑡) ⇒ 𝑈 (𝑡) =
∑

𝜏<𝑡
𝑦𝜈(𝑡).

4. The number of infections at day 𝑡 = 1 was initialized to be equal
to the total number of infections reported before that date:

𝐼(1) =
∑

𝑦𝜈 (𝜏).

𝜏<1
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Fig. 2. Continuation from Fig. 1.
Subsequent values for the initialization of 𝐼(𝑡) can be obtained
by neglecting noise and disturbances from (3a)–(3c), which leads
to

𝐼(𝑡 + 1) = −𝛾𝐼(𝑡) + 𝑦𝜈 (𝑡).

The initialization for 𝑅(𝑡) can then be obtained from 𝑅(𝑡) =
𝑈 (𝑡) − 𝐼(𝑡), ∀𝑡 ⩾ 1.

5. Assuming a constant value for the infection rate 𝛽 and ignoring
disturbances, (3b) can be written as

𝑈 (𝑡 + 1) = 𝑈 (𝑡) + 𝛽𝐼(𝑡) −
𝛽
𝑁0

𝐼(𝑡)𝑈 (𝑡), ∀𝑡 ⩾ 1,

from which initializations for 𝛽 and 𝛽∕𝑁0 can be obtained
through a least-squares linear fit. Since the precise value for
𝑁0 is not identifiable (see Section 3), we took this value to be
‘‘correct’’.

6. The deaths reporting rate was initialized with a constant value
𝜔 determined from (3d) through a least-squares linear fit.

The same initialization process described above was applied to all coun-
tries/regions and time intervals in our dataset, including the alternative
468
models discussed in Section 4.4. This initialization resulted in very few
failures of the nonlinear solver across the whole dataset.

As noted in Remark 3, to avoid numerical issues we replaced (16)
in Algorithm 1 by (18) with 𝜖 = 10−4. In the interest of time, we have
also limited the number of iterations to 30.

4.2. Forecasts based on the entire datasets

Figs. 1–2 show state estimates and forecasts based on the largest
window of daily data available at the writing of this paper for Italy, Por-
tugal, Japan and the US states of New York, California, and Montana.
At this time, most of these regions are experiencing a strong resurgence
in the number of cases but with fairly distinct progressions since early
March: In Italy, the United Kingdom, Germany, Portugal, the state of
São Paulo, and the US states of New York, California, Texas, and Illinois
we see two clearly defined waves; Japan seems to be in the middle of
a third wave; Montana’s number of cases seems to evolve in a step-like
fashion; and India is not (yet?) showing a clearly defined second wave.

In several countries we see that the second wave exceeds the
magnitude of the first wave in terms of the number of new cases, but
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Fig. 3. Estimates of the time-varying parameters for the model (3)–(4), based on data available up to mid December. The forecasts extend for 3 weeks past the available data.

Fig. 4. Running forecasts for the daily numbers of new cases and deaths for the model (3)–(4), based on data available up to 7, 14, and 21 days prior to the forecast. The solid
lines depict the forecasts, whereas the dashed lines of the same color depict the corresponding 95% confidence intervals. To keep the plots less cluttered, only the upper bound
of the confidence interval is plotted. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Continuation from Fig. 4.
ot in terms of daily deaths. The discrepancy between the number
f new cases and deaths, which is particularly extreme in Italy, the
nited Kingdom, Germany, Portugal, Japan, New York, and Illinois

s ‘‘explained’’ by the model through changes in the new-cases and
eaths reporting rates. This can be confirmed by the plots in Fig. 3,
hich shows the estimates of the different time-varying parameters.
owever, as noted in Section 2.3, these parameters are fundamentally
ot identifiable and can, at most be estimated up to the state/input
ransformation in (5). The plots presented here were obtained by
esolving the model ambiguity as discussed in Section 4.1. As noted
n Remark 2, by setting the initial new-cases reporting rate 𝜙 to 100%,

an increase in the rate results in values for 𝜙 larger than 100%, which
obviously means that the original rate really started at some value
below 100%, but the data available does not permit estimating the
precise value of the rate in absolute terms.

Because the time series exhibit large variation, the number of cases
in the 𝑦-axis are plotted in a logarithmic scale. While this permits a
better visualization of the data at multiple scales, it somewhat distorts
470
the confidence intervals, which visually appear much larger when the
number of cases is smaller. For example in Italy, the confidence interval
for the daily number of deaths in August is roughly [1,40] and in early
December it is roughly [695–770], while the latter is twice as wide as
the former, it appears far smaller with the logarithmic scale used in
Fig. 1.

4.3. Running forecasts

A large effort was devoted to validate the methodology used to
create forecasts for the daily numbers of new cases and deaths: Starting
from the first Wednesday for which we had 21 days of past data,
we performed system identification for the stochastic SIR model and
computed forecasts for 7, 14, and 21 days ahead; which can eventually
be compared with the actual values. We repeated this procedure for
every subsequent Wednesday, resulting in updated forecasts. To obtain
true validation, the model identified with data up to a particular
Wednesday, does not use any subsequent data, either as measurements
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Fig. 6. Italy running forecasts for the daily numbers of new cases and deaths based on data available up to 7, 14, and 21 days prior to the forecast. The different plots corresponds
to distinct assumptions regarding which parameters of the model (3)–(4) are allowed to vary with time.
or to help initialize the numerical solver. This procedure was car-
ried out for every country/region in our datasets and for every week
for which we had, at least, 21 days of data, resulting in over 4500
identification/forecasting experiments.

Figs. 4–5 shows the results obtained for the same countries/states
shown in Figs. 1–2. It is important to emphasize that in Figs. 1–2,
forecasts only appear in the 3-weeks at the right-hand side of the plots.
Prior to that, the solid and dash lines correspond to estimates and
confidence intervals for (past) state/measurements that were computed
using the entire datasets. In contrast, every point in the solid lines in
Figs. 4–5 corresponds to a forecast that was compute 1, 2, or 3 weeks
before. The corresponding dashed lines show the upper bounds of the
associated 95% confidence intervals. Several important conclusions can
be drawn from these plots:

1. The initial forecasts (computed just with 21 days of measure-
ments) vary greatly in accuracy and often come associated with
471

very wide confidence intervals, reflecting the fact that 21 days
of measurements do not provide enough information to obtain
reliable estimates. However, by the time 4–5 weeks of data are
available, the confidence intervals start to become much tighter.

2. The actual numbers of daily deaths, generally fall inside the
95% confidence intervals computed 7, 14, and 21 days be-
fore, showing that the model is especially reliable in predicting
disease-related casualties. For the countries/states shown, the
main exception can bee seen in California in late May, India in
mid-June, Texas in mid-July, and São Paulo in late November.

3. Most of the actual numbers of new cases also fall inside the 95%
confidence intervals computed 7, 14, and 21 days before, but
we can see more exceptions to this ‘‘rule’’. For example, this
can be seen in Italy and the United Kingdom in late April and
mid-October; as well as in California and Texas in late May and
through most of June.
The larger difficulty in predicting the daily number of new
cases rather than predicting the number of daily deaths is not

surprising in view of the fact that the former is highly dependent
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Fig. 7. California, USA running forecasts for the daily numbers of new cases and deaths based on data available up to 7, 14, and 21 days prior to the forecast. The different plots
corresponds to distinct assumptions regarding which parameters of the model (3)–(4) are allowed to vary with time.
t
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on the infection and new-cases reporting rates, which can exhibit
abrupt changes due to the so-called super-spreader events (med-
icalxpress.com, 2020) or changes in testing policies and/or test
availability.

4. The estimates produced are fairly robust to outliers that appear
in essentially all datasets. Due to the use of a 7-day moving
average filter, each single-day outlier results in 7 consecutive
measurements that stand out from the adjacent data points.
Notable examples of such outliers appear in the number of
deaths in Italy in August 15–21 and in New York in June
29–July 5 (among others). Typically, such outliers are caused
by an agency adding to their daily report a number of past
deaths/cases that had occurred over some past period of time,
but had been neglected in previous daily reports (see Nov. 4th
report, Portuguese Direção-Geral de Saúde, 2020). Even though
some outlier are clearly noticeable, we opted not to discard any
of these data points because they could potentially be caused by
super-spreader events.
472

c

In practice, the existence of these outliers causes some bias in the
estimates, but they generally do not leads to data points outside
the 95% confidence intervals.

5. For a few regions/periods we see large fluctuations in the fore-
casts from one week to the next. This is especially noticeable
in the United Kingdom in September and October, in Germany
since early July until December, in Portugal in early Decem-
ber, in India in August, in New York from mid-July until mid-
December, and in Illinois from mid-September until December.
We shall return to these fluctuation in Section 4.4.

4.4. Alternative models

The general model in (3)–(4) allows the infection rate 𝛽(𝑡), the
new-cases reporting rate 𝜙(𝑡), and the deaths reporting rate 𝜔(𝑡) to be
ime varying with increments determined by the zero-mean random
rocesses 𝑑𝛽 (𝑡), 𝑑𝜔(𝑡), 𝑑𝜙(𝑡) in (4). A special instance of this model in-
ludes the case in which the zero-mean increment processes have zero
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Fig. 8. Running forecasts for the daily numbers of new cases and deaths for the model (3)–(4), based on data available up to 7, 14, and 21 days prior to the forecast. The solid
ines depict the forecasts, whereas the dashed lines of the same color depict the corresponding 95% confidence intervals. To keep the plots less cluttered, only the upper bound
f the confidence interval is plotted. These plots differ from those in Fig. 4 in that here the death rate 𝜔 was assume constant. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
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variance and it is instructive to see how the forecasts would change
if we were to consider constant rather than time-varying values for
these parameters. In addition, we could also question the assumption
of keeping the removal rate 𝛾 constant, rather than a time varying
parameter, also with increments determined by a zero-mean random
process.

Different combinations are possible for which parameters are al-
lowed to vary and which should remain constant. Figs. 6–7 show a
comparison of forecasts for Italy and the US state of California for the
following 6 possibilities:

(a) all parameters constant;
(b) a variable infection rate 𝛽(𝑡), but constant removal 𝛾, new-cases

reporting rate 𝜙 and deaths reporting rates 𝜔;
(c) variable infection rate 𝛽(𝑡), new-cases reporting rate 𝜙(𝑡), deaths
473

reporting rate 𝜔(𝑡), but constant removal rate 𝛾; o
(d) variable infection rate 𝛽(𝑡) and new-cases reporting rate 𝜙(𝑡), but
constant removal rate 𝛾 and deaths reporting rate 𝜔;

(e) variable infection rate 𝛽(𝑡), removal rate 𝛾(𝑡), new-cases report-
ing rate 𝜙(𝑡), but constant deaths reporting rate 𝜔; and

(f) all parameters time varying.

he selection of the combinations above is motivated by the widely
ccepted observation that the infection rate has varied greatly over
ime, and therefore we take it as time-varying in all but the first option.
n addition, it is also well known that the testing rate for asymptomatic
atients has varied greatly, so we only take the new-cases reporting
ate as constant in the first 2 options. Variability on the remaining
arameters is likely, but almost certainly of a smaller magnitude.

A comparison of plots like the ones in Figs. 6–7 for a large number

f countries/regions yields the following observations:
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Fig. 9. Continuation from Fig. 8.
1. In general, assuming that all parameters are constant or that all
but the infection rate 𝛽(𝑡) are constant severally compromises the
models’ ability to produce useful forecasts.
For the constant parameters model, in every dataset that exhibits
a second wave, the numbers of new cases during the second
wave fall grossly outside the confidence intervals associated with
the forecasts. This is not surprising in view of the fact that a
constant-parameter SIR model cannot exhibit multiple waves.
When only the infection rate is allowed to be time-varying, it
is possible to ‘‘explain’’ the measurements, but this typically
requires large levels of noise and/or a highly variable infection
rate, which typically result in confidence intervals that are larger
than those obtained with richer models.

2. For a large number of countries/regions, the results obtained
assuming that all parameters are time varying differ little from
those assuming that the infection rate 𝛽(𝑡) and the new-cases
reporting rate 𝜙(𝑡) are the only time-varying parameters. This
474
is generally true both for the point forecasts and the confidence
intervals.
For a more detailed comparison of the original model (3)–(4),
with the simplified model that considers a constant removal rate
𝛾 and deaths reporting rate 𝜔, but time varying infection 𝛽(𝑡)
and new-cases reporting 𝜙(𝑡) rates, we present in Figs. 8–9 the
same running forecasts we have seen in Figs. 4–5. While for
many countries/regions the results are indeed similar, by and
large, assuming a constant death rate results in more accurate
estimates and tighter confidence intervals, without significantly
increase the number of forecasts outside the confidence inter-
vals. In fact, the large fluctuations in the forecasts from one week
to the next that we had noticed in Section 4.3, are mostly absent
in Figs. 8–9. This indicates that a stochastic SIR model with just
two time-varying parameters 𝛽(𝑡) and 𝜙(𝑡) is still sufficiently rich
to represent the data available and that a time-varying death rate
introduces unnecessary model uncertainty.
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5. Conclusions and future work

We have shown that it is possible to construct reliable forecasts for
the evolution of an epidemic purely from time series of new cases and
deaths. This is particularly important in scenarios where social behavior
and nonpharmaceutical interventions cause a continuous change in
epidemic parameters such as the infection and reporting rates.

Because of inherent model ambiguities, the a posteriori forecasts
are not always accurate; see for example the estimates in Fig. 8 for
the number of deaths in Germany in June or for the United Kingdom
in August. However, those inaccurate estimates are typically associ-
ated with large 95% confidence intervals that still contain the actual
future measurements. From the perspective of epidemic management,
the magnitude of the forecast confidence intervals, and in particular
the ‘‘pessimistic’’ upper bounds of these intervals, is probably more
important than the estimates themselves, as it should inform decision
makers of the expected worst-case stress on the healthcare system.

We have used a Gaussian random walk stochastic model for pa-
rameter drift that is completely agnostic to external factors. It should
be possible to improve forecasting when we have available a set of
‘‘covariates’’ that can be used to estimate parameter variations, as
in IHME COVID-19 (2020). Introducing such covariates is the subject
of future research.

We have seen that there are fundamental limitations in identifying
the internal state and parameters of an SIR model based on daily counts
of new cases and deaths. However, this lack of identifiability can be
lifted through the use of additional measurements, such as how many
new cases are asymptomatic and/or how many individuals were tested
and received a negative result. Incorporating such measurements is also
the subject of future research, as well as a more systematic study of the
identifiability of SIR models (Miao et al., 2011).

Our SIR model is focused on a specific region and the transfer
of infected individuals from other regions was only accounted for
through stochastic additive terms. This could be improved by consider-
ing more sophisticated models that explicitly take into account external
effects. However, we foreseen significant challenges in identifying the
associated parameters.
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