## **A Tale of Two Doses:** Model Identification and Vaccination for COVID-19

Raphael Chinchilla In collaboration with: Guosong Yang, Murat K. Erdal, Ramon R. Costa and João P. Hespanha

60<sup>th</sup> IEEE Conference on Decision and Control

contact: raphaelchinchilla@ucsb.edu



## **COVID-19 needs no introduction**



### New reported cases



Credits: The New York Times - accessed Nov 2021 https://www.nytimes.com/interactive/2021/us/covid-cases.html

### Center for Control, Dynamical Systems, and Computation

## **Our work needs introduction**



## Limits of this graph:

٠

- Reported data only
  - noise? confidence intervals?
  - asymptomatic cases? uncounted deaths?

## No forecasting

- Policy makers need information on the future not the past
- How to design vaccination policies?

## Reason: does not rely on a model

### UC SANTA BARBARA

## **Our work needs introduction**



### Center for Control, Dynamical Systems, and Computation

## **Model for COVID-19**



## We start with an SIR model

## Dynamics



### Observations



| #cases  |  |
|---------|--|
| #deaths |  |

### UC SANTA BARBARA

Dynamics

$$S(t+1) = S(t) - \frac{\beta I(t)S(t)}{N_0} - \Psi(t)$$
$$I(t+1) = I(t) + \frac{\beta I(t)S(t)}{N_0} - \gamma I(t)$$
$$R(t+1) = R(t) + \gamma I(t) + \Psi(t)$$

### Observations

$$y_C(t) = \frac{\beta \quad I(t)S(t)}{N_0}$$
$$y_D(t) = \omega I(t)$$
$$y_{\Psi}(t) = \Psi(t)$$





## UC SANTA BARBARA

# Dynamics $S(t+1) = S(t) - \frac{\beta - I(t)S(t)}{N_0} - \Psi(t) + d_{\nu}(t)$ $I(t+1) = I(t) + \frac{\beta - I(t)S(t)}{N_0} - \gamma I(t) - d_{\nu}(t) + d_{\rho}(t)$ $R(t+1) = R(t) + \gamma I(t) + \Psi(t) - d_{\nu}(t)$

 $R(t+1) = R(t) + \gamma I(t) + \Psi(t) - d_{\rho}(t)$ 

### Observations

 $y_C(t) = \frac{\beta I(t)S(t)}{N_0} + w_C(t)$  $y_D(t) = \omega I(t) + w_D(t)$  $y_{\Psi}(t) = \Psi(t)$ 





Process and measurement noise zero mean independent Gaussian RV

### UC SANTA BARBARA

# Dynamics $S(t+1) = S(t) - \frac{\beta(t)I(t)S(t)}{N_0} - \Psi(t) + d_{\nu}(t)$ $I(t+1) = I(t) + \frac{\beta(t)I(t)S(t)}{N_0} - \gamma I(t) - d_{\nu}(t) + d_{\rho}(t)$ $R(t+1) = R(t) + \gamma I(t) + \Psi(t) - d_{\nu}(t)$

 $R(t+1) = R(t) + \gamma I(t) + \Psi(t) - d_{\rho}(t)$ 



Parameter drift  $\beta(t+1) = \beta(t) + d_{\beta}(t)$   $\phi(t+1) = \phi(t) + d_{\phi}(t)$ 

Center for Control, Dynamical Systems, and Computation

| #cases    |
|-----------|
| #deaths   |
| #vaccines |





## **Identification and Estimation**



## Identifiability

Can we uniquely identify all the parameters? Yes!

Theorem: A tuple of initial states and parameters  $(R_1, U_1, \Theta) \in \mathbb{R}^6_{\geq 0}$  is locally identifiable on the interval  $\{1, 2, 3\}$  for an input sequence  $\Psi : \mathbb{N} \to \mathbb{R}_{\geq 0}$ if

$$\begin{split} \beta, \phi, \omega > 0, S(1), I(t) > 0 & \forall t \in \{1, 2, 3\} \\ \Psi(2) \neq \frac{I(2)S(2)}{I(1)S(1)} \Psi(1), \end{split}$$

where  $S(t) = N_0 - U(t)$  and I(t) = U(t) - R(t) are the susceptible and infected state variables at  $t \in \mathbb{N}$ .

Interpretation: Identifiable if vaccine

### UC SANTA BARBARA

## **Estimation**

 $V = (\sigma_{\nu}, \sigma_{\rho}, \sigma_{C}, \sigma_{D}, \sigma_{\beta}, \sigma_{\phi})$   $V = (y_{C}(1), \dots, y_{C}(T), y_{D}(1), \dots, y_{D}(T))$   $V = (S(1), \dots, S(T), I(1), \dots, I(T), R(1), \dots, R(T), \beta(1), \dots, \beta(T), \phi(1), \dots, \phi(T), \omega, \gamma)$ states

Model: Additive *i.i.d.* disturbances = explicit Probability density function  $p_{Z,Y}(Z,Y;V)$ 

We can estimate parameters using Maximum Likelihood Estimation

Theorem (simplified): If the conditional distribution  $p_{Z|Y}(\cdot)$  is a multivariable Gaussian, then the maximum likelihood estimator for V can be obtained using

$$\hat{V} = \arg\max_{V} \left[ -\frac{1}{2} \log \det \left( \frac{d^2 \log p_{Z,Y}(\hat{Z}, Y; V)}{dZ^2} \right) + \max_{Z} \log p_{Z,Y}(Z, Y; V) \right]$$

and the associated minimum variance estimator for Z is given by  $\hat{Z} = \arg \max_Z \log p_{Z,Y}(Z,Y;\hat{V})$  with covariance

$$\left(\frac{d^2\log p_{Z,Y}(\hat{Z},Y;V)}{dZ^2}\right)^{-1}$$

### UC SANTA BARBARA

## **Example with simulated data**



## Example with data from California



## **Vaccination strategies**



# **Optimal vaccination**

If we can estimate current state we can design optimal vaccination strategies! We model this as an optimization problem with constraints

Cost function:  $J = \sum_{t=1}^{P} I(t)$  Possible interpretations: -Minimize total number of simultaneous infected people. -Minimize economic impact of infected not working #newly available Constraints:Vaccine supply constraint $\sum_{s=1}^{t} \sum_{j=1}^{m_i} \psi_{ij}(s) \le \sum_{s=1}^{t} A_i(s), \quad \forall i \in \{1, \dots, M\}$ M different vaccines<br/>mi doses each Healthcare sys. capacity  $\sum_{i=1}^{m} \sum_{j=1}^{m} \psi_{ij}(t) \leq B(t)$  $M m_i$ #doses nurses, doctors,..., can administer every day Interval between doses  $\sum_{s=1}^{t} \psi_{i(j+1)}(s) \leq \sum_{s=1}^{t-\tau_{ij}} \psi_{ij}(s),$ #days between doses  $\forall i \in \{1, \ldots, M\}, i \in \{1, \ldots, m_i - 1\}$ 

Center for Control, Dynamical Systems, and Computation

## When to give the second dose?



Total efficacy of first + second dose:  $\theta_{11} + \theta_{12} = 0.8$ 

### Center for Control, Dynamical Systems, and Computation

## **Balancing between availability and efficacy**





## Conclusion



## Conclusion

- Expanded on SIR to construct model with vaccination, stochastic disturbances and time varying parameters
- Including vaccination renders the model identifiable
- Results applied in California seems to indicate much larger infection numbers than reported
- Model can be used to design vaccination strategies
- Optimal vaccination policies depend on proportion between efficacy

UC SANTA BARBARA

## **A Tale of Two Doses:** Model Identification and Vaccination for COVID-19

Raphael Chinchilla In collaboration with: Guosong Yang, Murat K. Erdal, Ramon R. Costa and João P. Hespanha

60<sup>th</sup> IEEE Conference on Decision and Control

contact: raphaelchinchilla@ucsb.edu

Ending of <u>A Tale of Two Cities</u> by Charles Dickens:

I see a beautiful city and a brilliant people rising from this abyss, and, in their struggles to be truly free, in their triumphs and defeats, through long years to come, I see the evil of this time and of the previous time of which this is the natural birth, gradually making expiation for itself and wearing out.

### Center for Control, Dynamical Systems, and Computation